Реферат на тему Микро макро и мегамиры
Работа добавлена на сайт bukvasha.net: 2014-08-07Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Микро-, макро- и мегамиры.
Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.
Современная наука выделяет в мире три структурных уровня.
Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с.
Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.
Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.
На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.
Микромир.
Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.
В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. В 1895 г. Дж. Томсон открыл электрон - отрицательно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.
Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее – нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).
Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.
Макромир.
В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI—XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов — мельчайших в мире частиц.
Со становления классической механики начинается научный этап изучения природы. Формирование научных взглядов на строение материи относится к XVI в., когда Г.Галилеем была заложена основа первой в истории науки физической картины мира — механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы — научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц — атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.
Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области — оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.
Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X. К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии» .
После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.
Мегамир.
Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.
Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15— 20 млрд. световых лет. Понятия «Вселенная» и «Метагалактика» — очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» — тот же мир, но с точки зрения его структуры — как упорядоченную систему галактик.
Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.
В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.
Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” :
- Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;
- Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;
- Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы — энергии Вселенной — приходится на фотоны;
- Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.
Затем разворачивается грандиозная картина образования структуры Метагалактики.
В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой космологией. В этой модели описывается эволюция Вселенной, начиная с момента 10-45 с после начала расширения. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.
Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10-50 см
Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. За период инфляционной стадии продолжительностью 10-34. Вселенная раздулась от невообразимо малых квантовых размеров 10-33 до невообразимо больших 101000000см, что на много порядков превосходит размер наблюдаемой Вселенной — 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения.
Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветившего космос.
Этап отделения вещества от излучения: оставшееся после аннигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от вещества излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и экспериментально обнаруженный в 1965 г.
В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур — атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения — человека.
Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10-30 с, далее между этими моделями принципиальных расхождений в понимании этапов космической эволюции нет.
Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.
Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.
Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.
По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.
Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы. Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч — самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами. На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды. Звезды не существуют изолированно, а образуют системы.
Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела — Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.
Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.
Издавна люди пытались найти объяснение многообразию и причудливости мира. Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно, в конечном счете, материалистическим или идеалистическим.
Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.
Список использованной литературы
1. Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естествознания», М.: МГУК, 2000.
2. Горелов А.А. «Концепции современного естествознания », М.: Высшее образование, 2006.
3. Козлов Ф.В. Справочник по радиационной безопасности.- М.: Энергоатом – издат, 1991.
4. Криксунов Е.А., Пасечник В.В., Сидорин А.П., Экология, М., Издательский дом "Дрофа", 1995.
5. Поннамперума С. «Происхождение жизни», М., Мир, 1999 г.
6. Сивинцев Ю.В. Радиация и человек. - М.: Знание, 1987.
7. Хотунцев Ю.М. Экология и экологическая безопасность. - М.: АСADEMA, 2002.
Материя – это бесконечное множество всех существующих в мире объектов и систем, субстрат любых свойств, связей, отношений и форм движения. В основе представлений о строении материального мира лежит системный подход, согласно которому любой объект материального мира, будь то атом, планета, организм или галактика, может быть рассмотрен как сложное образование, включающее в себя составные части, организованные в целостность.
Современная наука выделяет в мире три структурных уровня.
Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10-8 до 10-16 см, а время жизни — от бесконечности до 10-24 с.
Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.
Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.
И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро - и мегамиры теснейшим образом взаимосвязаны.
На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время - порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.
Микромир.
Демокритом в античности была выдвинута Атомистическая гипотеза строения материи. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.
В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов. В 1895 г. Дж. Томсон открыл электрон - отрицательно заряженную частицу, входящую в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Существовало несколько моделей строения атома.
Выявлены специфические качества микрообъектов, выражающиеся в наличии у них как корпускулярных (частицы), так и световых (волны) свойств. Элементарные частицы – простейшие объекты микромира, взаимодействующие как единое целое. Известно более 300 разновидностей. В первой половине ХХ в. были открыты фотон, протон, нейтрон, позднее – нейтрино, мезоны и другие. Основные характеристики элементарных частиц: масса, заряд, среднее время жизни, квантовые числа. Все элементарные частицы, абсолютно нейтральны, имеют свои античастицы - элементарные частицы, обладающие теми же характеристиками, но отличающиеся знаками электрического заряда. При столкновении частиц происходит их уничтожение (аннипиляция).
Стремительно возрастает количество открытых элементарных частиц. Их объединяют в «семейства» (мультиплеты), «роды» (супермультиплеты), «племена» (адроны, лептоны, фотоны и т.п.). Некоторые частицы группируются по принципу симметрии. Например, триплет из трёх частиц (кварков) и триплет из трёх античастиц (антикварков). К концу ХХ века физика приблизилась к созданию стройной теоретической системы, объясняющей свойства элементарных частиц. Предложены принципы, позволяющие дать теоретический анализ многообразия частиц, их взаимопревращений, построить единую теорию всех видов взаимодействий.
Макромир.
В истории изучения природы можно выделить два этапа: донаучный и научный. Донаучный, или натурфилософский, охватывает период от античности до становления экспериментального естествознания в XVI—XVII вв. Наблюдаемые природные явления объяснялись на основе умозрительных философских принципов. Наиболее значимой для последующего развития естественных наук была концепция дискретного строения материи атомизм, согласно которому все тела состоят из атомов — мельчайших в мире частиц.
Со становления классической механики начинается научный этап изучения природы. Формирование научных взглядов на строение материи относится к XVI в., когда Г.Галилеем была заложена основа первой в истории науки физической картины мира — механической. Он не просто обосновал гелиоцентрическую систему Н. Коперника и открыл закон инерции, а разработал методологию нового способа описания природы — научно-теоретического. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, которые становились предметом научного исследования. И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небесных тел, и движение земных объектов одними и теми же законами. Природа рассматривалась как сложная механическая система. В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности. Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц — атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсолютно постоянно и всегда пребывает в покое. Время представлялось как величина, не зависящая ни от пространства, ни от материи. Движение рассматривалось как перемещение в пространстве по непрерывным траекториям в соответствии с законами механики. Итогом ньютоновской картины мира явился образ Вселенной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий.
Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области — оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рамках механистической картины мира.
Эксперименты английского естествоиспытателя М. Фарадея и теоретические работы английского физика Дж. К. Максвелла окончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и положили начало электромагнитной картине мира. Явление электромагнетизма открыл датский естествоиспытатель X. К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М. Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. М. Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую область. Его работы стали исходным пунктом исследований Дж. К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Максвелл «перевел» модель силовых линий Фарадея в математическую формулу. Понятие «поле сил» первоначально складывалось как вспомогательное математическое понятие. Дж. К. Максвелл придал ему физический смысл и стал рассматривать поле как самостоятельную физическую реальность: «Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнитном состоянии» .
После экспериментов Г. Герца в физике окончательно утвердилось понятие поля не в качестве вспомогательной математической конструкции, а как объективно существующей физической реальности. В результате же последующих революционных открытий в физике в конце прошлого и начале нынешнего столетий оказались разрушенными представления классической физики о веществе и поле как двух качественно своеобразных видах материи.
Мегамир.
Мегамир или космос, современная наука рассматривает как взаимодействующую и развивающуюся систему всех небесных тел.
Все существующие галактики входят в систему самого высокого порядка - Метагалактику. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15— 20 млрд. световых лет. Понятия «Вселенная» и «Метагалактика» — очень близкие понятия: они характеризуют один и тот же объект, но в разных аспектах. Понятие «Вселенная» обозначает весь существующий материальный мир; понятие «Метагалактика» — тот же мир, но с точки зрения его структуры — как упорядоченную систему галактик.
Современные космологические модели Вселенной основываются на общей теории относительности А. Эйнштейна, согласно которой метрика пространства и времени определяется распределением гравитационных масс во Вселенной. Ее свойства как целого обусловлены средней плотностью материи и другими конкретно-физическими факторами. Время существования Вселенной бесконечно, т.ё. не имеет ни начала, ни конца, а пространство безгранично, но конечно.
В 1929 году американский астроном Э.П. Хаббл обнаружил существование странной зависимости между расстоянием и скоростью галактик: все галактики движутся от нас, причем со скоростью, которая возрастает пропорционально расстоянию, - система галактик расширяется. Расширение Вселенной считается научно установленным фактом. Согласно теоретическим расчетам Ж. Леметра, радиус Вселенной в первоначальном состоянии был 10-12 см, что близко по размерам к радиусу электрона, а ее плотность составляла 1096 г/см3. В сингулярном состоянии Вселенная представляла собой микрообъект ничтожно малых размеров. От первоначального сингулярного состояния Вселенная перешла к расширению в результате Большого взрыва.
Ретроспективные расчеты определяют возраст Вселенной в 13-20 млрд. лет. Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур. В современной космологии для наглядности начальную стадию эволюцию Вселенной делят на “эры” :
- Эра адронов. Тяжелые частицы, вступающие в сильные взаимодействия;
- Эра лептонов. Легкие частицы, вступающие в электромагнитное взаимодействие;
- Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы — энергии Вселенной — приходится на фотоны;
- Звездная эра. Наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик.
Затем разворачивается грандиозная картина образования структуры Метагалактики.
В современной космологии наряду с гипотезой Большого взрыва весьма популярна инфляционная модель Вселенной, в которой рассматривается творение Вселенной. Идея творения имеет очень сложное обоснование и связана с квантовой космологией. В этой модели описывается эволюция Вселенной, начиная с момента 10-45 с после начала расширения. В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.
Начало Вселенной определяется физиками-теоретиками как состояние квантовой супергравитации с радиусом Вселенной в 10-50 см
Стадия инфляции. В результате квантового скачка Вселенная перешла в состояние возбужденного вакуума и в отсутствие в ней вещества и излучения интенсивно расширялась по экспоненциальному закону. В этот период создавалось само пространство и время Вселенной. За период инфляционной стадии продолжительностью 10-34. Вселенная раздулась от невообразимо малых квантовых размеров 10-33 до невообразимо больших 101000000см, что на много порядков превосходит размер наблюдаемой Вселенной — 1028 см. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения.
Переход от инфляционной стадии к фотонной. Состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветившего космос.
Этап отделения вещества от излучения: оставшееся после аннигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал. Отделившееся от вещества излучение и составляет современный реликтовый фон, теоретически предсказанный Г. А. Гамовым и экспериментально обнаруженный в 1965 г.
В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур — атомов (первоначально атомов водорода), галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновению жизни и как венца творения — человека.
Различие между этапами эволюции Вселенной в инфляционной модели и модели Большого взрыва касается только первоначального этапа порядка 10-30 с, далее между этими моделями принципиальных расхождений в понимании этапов космической эволюции нет.
Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.
Метагалактика – представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределение в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами. Согласно современным представлениям, для метагалактики характерно ячеистая (сетчатая, пористая) структура. Возраст Метагалактики близок к возрасту Вселенной, поскольку образование структуры приходиться на период, следующий за разъединением вещества и излучение. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет.
Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.
По форме галактики условно распределяются на три типа: эллиптические, спиральные, неправильные.
Звезды. На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. 97% вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. У многих других галактик, если не у большинства, «звездная субстанция» составляет более чем 99,9% их массы. Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч — самых молодых. Есть звезды, которые образуются в настоящее время и находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами. На завершающем этапе эволюции звезды превращаются в инертные («мертвые») звезды. Звезды не существуют изолированно, а образуют системы.
Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению. В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет и бесчисленное множество метеоритных тел, движущихся как роями, так и в виде отдельных частиц. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела — Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг Солнца в одном и том же направлении и почти в одной и той же плоскости. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.
Первые теории происхождения Солнечной системы были выдвинуты немецким философом И. Кантом и французским математиком П. С. Лапласом. Согласно этой гипотезе система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи (туманности), находящейся во вращательном движении вокруг Солнца.
Издавна люди пытались найти объяснение многообразию и причудливости мира. Изучение материи и её структурных уровней является необходимым условием формирования мировоззрения, независимо от того, окажется ли оно, в конечном счете, материалистическим или идеалистическим.
Достаточно очевидно, что очень важна роль определения понятия материи, понимания последней как неисчерпаемой для построения научной картины мира, решения проблемы реальности и познаваемости объектов и явлений микро, макро и мега миров.
Список использованной литературы
1. Ващекин Н.П., Лось В.А., Урсул А.Д. «Концепции современного естествознания», М.: МГУК, 2000.
2. Горелов А.А. «Концепции современного естествознания », М.: Высшее образование, 2006.
3. Козлов Ф.В. Справочник по радиационной безопасности.- М.: Энергоатом – издат, 1991.
4. Криксунов Е.А., Пасечник В.В., Сидорин А.П., Экология, М., Издательский дом "Дрофа", 1995.
5. Поннамперума С. «Происхождение жизни», М., Мир, 1999 г.
6. Сивинцев Ю.В. Радиация и человек. - М.: Знание, 1987.
7. Хотунцев Ю.М. Экология и экологическая безопасность. - М.: АСADEMA, 2002.