Реферат

Реферат на тему Краткая история появления параллелизма в архитектуре ЭВМ

Работа добавлена на сайт bukvasha.net: 2015-06-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 4.2.2025


Сегодня параллелизмом в архитектуре компьютеров уже мало кого удивишь. Все современные микропроцессоры, будь то Pentium III или PA-8700, MIPS R14000, Е2К или Power3 используют тот или иной вид параллельной обработки. В ядре Pentium 4 на разных стадиях выполнения может одновременно находиться до 126 микроопераций. На презентациях новых чипов и в пресс-релизах корпораций это преподносится как последнее слово техники и передовой край науки, и это действительно так, если рассматривать реализацию этих принципов в миниатюрных рамках одного кристалла.

Вместе с тем, сами эти идеи появились очень давно. Изначально они внедрялись в самых передовых, а потому единичных, компьютерах своего времени. Затем после должной отработки технологии и удешевления производства они спускались в компьютеры среднего класса, и наконец сегодня все это в полном объеме воплощается в рабочих станциях и персональных компьютерах.

Для того чтобы убедиться, что все основные нововведения в архитектуре современных процессоров на самом деле используются еще со времен, когда ни микропроцессоров, ни понятия суперкомпьютеров еще не было, совершим маленький экскурс в историю, начав практически с момента рождения первых ЭВМ.

IBM 701 (1953), IBM 704 (1955): разрядно-параллельная память, разрядно-параллельная арифметика.

Все самые первые компьютеры (EDSAC, EDVAC, UNIVAC) имели разрядно-последовательную память, из которой слова считывались последовательно бит за битом. Первым коммерчески доступным компьютером, использующим разрядно-параллельную память (на CRT) и разрядно-параллельную арифметику, стал IBM 701, а наибольшую популярность получила модель IBM 704 (продано 150 экз.), в которой, помимо сказанного, была впервые применена память на ферритовых сердечниках и аппаратное АУ с плавающей точкой.

IBM 709 (1958): независимые процессоры ввода/вывода.

Процессоры первых компьютеров сами управляли вводом/выводом. Однако скорость работы самого быстрого внешнего устройства, а по тем временам это магнитная лента, была в 1000 раз меньше скорости процессора, поэтому во время операций ввода/вывода процессор фактически простаивал. В 1958г. к компьютеру IBM 704 присоединили 6 независимых процессоров ввода/вывода, которые после получения команд могли работать параллельно с основным процессором, а сам компьютер переименовали в IBM 709. Данная модель получилась удивительно удачной, так как вместе с модификациями было продано около 400 экземпляров, причем последний был выключен в 1975 году - 20 лет существования!

IBM STRETCH (1961): опережающий просмотр вперед, расслоение памяти.

В 1956 году IBM подписывает контракт с Лос-Аламосской научной лабораторией на разработку компьютера STRETCH, имеющего две принципиально важные особенности: опережающий просмотр вперед для выборки команд и расслоение памяти на два банка для согласования низкой скорости выборки из памяти и скорости выполнения операций.

ATLAS (1963): конвейер команд.

Впервые конвейерный принцип выполнения команд был использован в машине ATLAS, разработанной в Манчестерском университете. Выполнение команд разбито на 4 стадии: выборка команды, вычисление адреса операнда, выборка операнда и выполнение операции. Конвейеризация позволила уменьшить время выполнения команд с 6 мкс до 1,6 мкс. Данный компьютер оказал огромное влияние, как на архитектуру ЭВМ, так и на программное обеспечение: в нем впервые использована мультипрограммная ОС, основанная на использовании виртуальной памяти и системы прерываний.

CDC 6600 (1964): независимые функциональные устройства.

Фирма Control Data Corporation (CDC) при непосредственном участии одного из ее основателей, Сеймура Р.Крэя (Seymour R.Cray) выпускает компьютер CDC-6600 - первый компьютер, в котором использовалось несколько независимых функциональных устройств. Для сравнения с сегодняшним днем приведем некоторые параметры компьютера:

время такта 100нс,

производительность 2-3 млн. операций в секунду,

оперативная память разбита на 32 банка по 4096 60-ти разрядных слов,

цикл памяти 1мкс,

10 независимых функциональных устройств.

Машина имела громадный успех на научном рынке, активно вытесняя машины фирмы IBM.

CDC 7600 (1969): конвейерные независимые функциональные устройства.

CDC выпускает компьютер CDC-7600 с восемью независимыми конвейерными функциональными устройствами - сочетание параллельной и конвейерной обработки. Основные параметры:

такт 27,5 нс,

10-15 млн. опер/сек.,

8 конвейерных ФУ,

2-х уровневая память.

ILLIAC IV (1974): матричные процессоры.

Проект: 256 процессорных элементов (ПЭ) = 4 квадранта по 64ПЭ, возможность реконфигурации: 2 квадранта по 128ПЭ или 1 квадрант из 256ПЭ, такт 40нс, производительность 1Гфлоп;

работы начаты в 1967 году, к концу 1971 изготовлена система из 1 квадранта, в 1974г. она введена в эксплуатацию, доводка велась до 1975 года;

центральная часть: устройство управления (УУ) + матрица из 64 ПЭ;

УУ это простая ЭВМ с небольшой производительностью, управляющая матрицей ПЭ; все ПЭ матрицы работали в синхронном режиме, выполняя в каждый момент времени одну и ту же команду, поступившую от УУ, но над своими данными;

ПЭ имел собственное АЛУ с полным набором команд, ОП - 2Кслова по 64 разряда, цикл памяти 350нс, каждый ПЭ имел непосредственный доступ только к своей ОП;

сеть пересылки данных: двумерный тор со сдвигом на 1 по границе по горизонтали;

Несмотря на результат в сравнении с проектом: стоимость в 4 раза выше, сделан лишь 1 квадрант, такт 80нс, реальная произв-ть до 50Мфлоп - данный проект оказал огромное влияние на архитектуру последующих машин, построенных по схожему принципу, в частности: PEPE, BSP, ICL DAP.

CRAY 1 (1976): векторно-конвейерные процессоры

В 1972 году С.Крэй покидает CDC и основывает свою компанию Cray Research, которая в 1976г. выпускает первый векторно-конвейерный компьютер CRAY-1: время такта 12.5нс, 12 конвейерных функциональных устройств, пиковая производительность 160 миллионов операций в секунду, оперативная память до 1Мслова (слово - 64 разряда), цикл памяти 50нс. Главным новшеством является введение векторных команд, работающих с целыми массивами независимых данных и позволяющих эффективно использовать конвейерные функциональные устройства.

Иерархия памяти.

Иерархия памяти пямого отношения к параллелизму не имеет, однако, безусловно, относится к тем особенностям архитектуры компьютеров, которые имеет огромное значение для повышения их производительности (сглаживание разницы между скоростью работы процессора и временем выборки из памяти). Основные уровни: регистры, кэш-память, оперативная память, дисковая память. Время выборки по уровням памяти от дисковой памяти к регистрам уменьшается, стоимость в пересчете на 1 слово (байт) растет. В настоящее время, подобная иерархия поддерживается даже на персональных компьютерах.

А что же сейчас используют в мире?

По каким же направлениям идет развитие высокопроизводительной вычислительной техники в настоящее время? Основных направлений четыре.

1. Векторно-конвейерные компьютеры. Конвейерные функциональные устройства и набор векторных команд - это две особенности таких машин. В отличие от традиционного подхода, векторные команды оперируют целыми массивами независимых данных, что позволяет эффективно загружать доступные конвейеры, т.е. команда вида A=B+C может означать сложение двух массивов, а не двух чисел. Характерным представителем данного направления является семейство векторно-конвейерных компьютеров CRAY куда входят, например, CRAY EL, CRAY J90, CRAY T90 (в марте 2000 года американская компания TERA перекупила подразделение CRAY у компании Silicon Graphics, Inc.).

2. Массивно-параллельные компьютеры с распределенной памятью. Идея построения компьютеров этого класса тривиальна: возьмем серийные микропроцессоры, снабдим каждый своей локальной памятью, соединим посредством некоторой коммуникационной среды - вот и все. Достоинств у такой архитектуры масса: если нужна высокая производительность, то можно добавить еще процессоров, если ограничены финансы или заранее известна требуемая вычислительная мощность, то легко подобрать оптимальную конфигурацию и т.п.

Однако есть и решающий "минус", сводящий многие "плюсы" на нет. Дело в том, что межпроцессорное взаимодействие в компьютерах этого класса идет намного медленнее, чем происходит локальная обработка данных самими процессорами. Именно поэтому написать эффективную программу для таких компьютеров очень сложно, а для некоторых алгоритмов иногда просто невозможно. К данному классу можно отнести компьютеры Intel Paragon, IBM SP1, Parsytec, в какой-то степени IBM SP2 и CRAY T3D/T3E, хотя в этих компьютерах влияние указанного минуса значительно ослаблено. К этому же классу можно отнести и сети компьютеров, которые все чаще рассматривают как дешевую альтернативу крайне дорогим суперкомпьютерам.

3. Параллельные компьютеры с общей памятью. Вся оперативная память таких компьютеров разделяется несколькими одинаковыми процессорами. Это снимает проблемы предыдущего класса, но добавляет новые - число процессоров, имеющих доступ к общей памяти, по чисто техническим причинам нельзя сделать большим. В данное направление входят многие современные многопроцессорные SMP-компьютеры или, например, отдельные узлы компьютеров HP Exemplar и Sun StarFire.

4. Последнее направление, строго говоря, не является самостоятельным, а скорее представляет собой комбинации предыдущих трех. Из нескольких процессоров (традиционных или векторно-конвейерных) и общей для них памяти сформируем вычислительный узел. Если полученной вычислительной мощности не достаточно, то объединим несколько узлов высокоскоростными каналами. Подобную архитектуру называют кластерной, и по такому принципу построены CRAY SV1, HP Exemplar, Sun StarFire, NEC SX-5, последние модели IBM SP2 и другие. Именно это направление является в настоящее время наиболее перспективным для конструирования компьютеров с рекордными показателями производительности.

Использование параллельных вычислительных систем

К сожалению чудеса в жизни редко случаются. Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностями их использования. Начнем с самых простых вещей. У вас есть программа и доступ, скажем, к 256-процессорному компьютеру. Что вы ожидаете? Да ясно что: вы вполне законно ожидаете, что программа будет выполняться в 256 раз быстрее, чем на одном процессоре. А вот как раз этого, скорее всего, и не будет.

Закон Амдала и его следствия

Предположим, что в вашей программе доля операций, которые нужно выполнять последовательно, равна f, где 0<=f<=1 (при этом доля понимается не по статическому числу строк кода, а по числу операций в процессе выполнения). Крайние случаи в значениях f соответствуют полностью параллельным (f=0) и полностью последовательным (f=1) программам. Так вот, для того, чтобы оценить, какое ускорение S может быть получено на компьютере из 'p' процессоров при данном значении f, можно воспользоваться законом Амдала:

Если 9/10 программы исполняется параллельно, а 1/10 по-прежнему последовательно, то ускорения более, чем в 10 раз получить в принципе невозможно вне зависимости от качества реализации параллельной части кода и числа используемых процессоров (ясно, что 10 получается только в том случае, когда время исполнения параллельной части равно 0).

Посмотрим на проблему с другой стороны: а какую же часть кода надо ускорить (а значит и предварительно исследовать), чтобы получить заданное ускорение? Ответ можно найти в следствии из закона Амдала: для того чтобы ускорить выполнение программы в q раз необходимо ускорить не менее, чем в q раз не менее, чем (1-1/q)-ю часть программы. Следовательно, если есть желание ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение не менее, чем на 99.99% кода, что почти всегда составляет значительную часть программы!

Отсюда первый вывод - прежде, чем основательно переделывать код для перехода на параллельный компьютер (а любой суперкомпьютер, в частности, является таковым) надо основательно подумать. Если оценив заложенный в программе алгоритм вы поняли, что доля последовательных операций велика, то на значительное ускорение рассчитывать явно не приходится и нужно думать о замене отдельных компонент алгоритма.

В ряде случаев последовательный характер алгоритма изменить не так сложно. Допустим, что в программе есть следующий фрагмент для вычисления суммы n чисел: 

s = 0

Do i = 1, n

s = s + a(i)

EndDo

(можно тоже самое на любом другом языке)

По своей природе он строго последователен, так как на i-й итерации цикла требуется результат с (i-1)-й и все итерации выполняются одна за одной. Имеем 100% последовательных операций, а значит и никакого эффекта от использования параллельных компьютеров. Вместе с тем, выход очевиден. Поскольку в большинстве реальных программ (вопрос: а почему в большинстве, а не во всех?) нет существенной разницы, в каком порядке складывать числа, выберем иную схему сложения. Сначала найдем сумму пар соседних элементов: a(1)+a(2), a(3)+a(4), a(5)+a(6) и т.д. Заметим, что при такой схеме все пары можно складывать одновременно! На следующих шагах будем действовать абсолютно аналогично, получив вариант параллельного алгоритма.

Казалось бы в данном случае все проблемы удалось разрешить. Но представьте, что доступные вам процессоры разнородны по своей производительности. Значит будет такой момент, когда кто-то из них еще трудится, а кто-то уже все сделал и бесполезно простаивает в ожидании. Если разброс в производительности компьютеров большой, то и эффективность всей системы при равномерной загрузке процессоров будет крайне низкой.

Но пойдем дальше и предположим, что все процессоры одинаковы. Проблемы кончились? Опять нет! Процессоры выполнили свою работу, но результат-то надо передать другому для продолжения процесса суммирования... а на передачу уходит время... и в это время процессоры опять простаивают...

Словом, заставить параллельную вычислительную систему или супер-ЭВМ работать с максимальной эффективность на конкретной программе это, прямо скажем, задача не из простых, поскольку необходимо тщательное согласование структуры программ и алгоритмов с особенностями архитектуры параллельных вычислительных систем.

Заключительный вопрос. Как вы думаете, верно ли утверждение: чем мощнее компьютер, тем быстрее на нем можно решить данную задачу?

Заключительный ответ. Нет, это не верно. Это можно пояснить простым бытовым примером. Если один землекоп выкопает яму 1м*1м*1м за 1 час, то два таких же землекопа это сделают за 30 мин - в это можно поверить. А за сколько времени эту работу сделают 60 землекопов? За 1 минуту? Конечно же нет! Начиная с некоторого момента они будут просто мешаться друг другу, не ускоряя, а замедляя процесс. Так же и в компьютерах: если задача слишком мала, то мы будем дольше заниматься распределением работы, синхронизацией процессов, сборкой результатов и т.п., чем непосредственно полезной работой.

Совершенно ясно, что не все так просто...


1. Курсовая на тему Разработка технологического процесса изготовления детали Архиметов червяк
2. Реферат на тему Blah Essay Research Paper Charles Darnay
3. Реферат на тему Parents Are Taking Control Essay Research Paper
4. Отчет по практике Отчет по ознакомительной практике в ОСБ 8614
5. Реферат на тему The Prince And The Pauper Mark Twain
6. Реферат на тему Dominica Essay Research Paper OFFICIAL NAME Commonwealth
7. Реферат Шарифуддин, Амир
8. Реферат Репродуктивное поведение юношей
9. Сочинение на тему Мастерство писателя в изображении истории
10. Реферат на тему Організація оподаткування субєктів малого підприємництва