Реферат

Реферат на тему Методика изучения показательной и логарифмической функции в курсе средней школы Простейшие показательные 3

Работа добавлена на сайт bukvasha.net: 2015-06-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Министерство образования Республики Беларусь

Учреждение образования

"Гомельский государственный университет им. Ф. Скорины"

Математический факультет

Кафедра МПМ








Методика изучения показательной и логарифмической функции в курсе средней школы. Простейшие показательные и логарифмические уравнения и неравенства

Реферат



Исполнитель:

Студентка группы М-32 Малайчук А.Ю.

Научный руководитель:

Канд. физ-мат. наук, доцент Лебедева М.Т.





Гомель 2007

Содержание


Введение

1. Образовательные цели изучения темы "Показательная и логарифмическая функции" в средней школе

2. Методика изучения свойств степеней и логарифмов. Введение определения показательной школе показательной функций, ее свойства и их приложения

З. Понятие обратной функции и методика его введения

4. Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции

Заключение

Литература


Введение


Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.

Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени (где , ). Можно построить функцию: , , область определения которой – множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа α: r1< α< r2. Исходя из графического изображения зависимости показателя степени и значения степени, показывается, что найдется такое значение y, которое будет наибольшим среди всех ar1 и наименьшим среди всех ar2 , которое можно считать значением aα.


1. Образовательные цели изучения темы "Показательная и логарифмическая функции" в средней школе


Изучение темы "Показательная, логарифмическая и степенная функции" в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:

Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:


; ;


тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества:


; ;


тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.

Основная цель – привести в систему и обобщить имеющиеся у учащихся сведения о степени, ознакомить их с показательной, логарифмической и степенной функциями и их свойствами (включая сведения о числе е и натуральных логарифмах); научить решать несложные показательные и логарифмические уравнения, их системы (содержащие также и иррациональные уравнения).

Рассматриваются свойства и графики трех элементарных функций: показательной, логарифмической и степенной. Систематизация свойств указанных функций осуществляется в соответствии с принятой схемой исследования функций. Достаточное внимание должно быть уделено работе с логарифмическими тождествами: тождественные преобразования логарифмических выражений применяются как при изложении теоретических вопросов курса (например, при выводе формулы производной показательной функции), так и при выполнении различного рода упражнений, например, решение логарифмических уравнений и неравенств.

Приведен краткий обзор свойств степенной функции в зависимости от различных значений показателя р.

Особое внимание уделяется показательной функции как той математической модели, которая находит наиболее широкое применение при изучении процессов и явлений окружающей действительности. Рассматриваются примеры различных процессов (например, радиоактивный распад, изменение температуры тела); показывается, что решение дифференциальных уравнений, описывающих эти процессы, является показательная функция. В связи с этим для показательной функции дается формула производной, вывод которой проводится с привлечением интуитивных представлений учащихся.

В ходе изучения свойств показательной, логарифмической и степенной функций учащиеся систематически решают простейшие показательные и логарифмические уравнения и неравенства, а также иррациональные уравнения. По мере закрепления соответствующих умений целесообразно также предлагать им уравнения и неравенства, сводящиеся к простейшим в результате несложных тождественных преобразований.


2. Методика изучения свойств степеней и логарифмов. Введение определения показательной школе показательной функций, ее свойства и их приложения


Ознакомление учащихся с показательной и логарифмической функциями начиная с изучения свойств степеней и логарифмов.

Курс алгебры знакомит учащихся с понятием степени с рациональным показателем. Таким образом для любого основания степени (где , ). Можно построить функцию: , , область определения которой – множество действительных чисел, необходимо ввести определение, степени с иррациональным показателем. Используемое свойство степени с основным, например, большим единицы (возрастании), рациональное приближение иррационального числа α: r1< α< r2. Исходя из графического изображения зависимости показателя степени и значения степени, показывается, что найдется такое значение y, которое будет наибольшим среди всех ar1 и наименьшим среди всех ar2 , которое можно считать значением aα.

Затем формируется определение показательной функции: функция, заданная формулой y=ax (, ), называется показательной функцией с основанием a, и формулируемые основные свойства: D(ax)=R; E(ax)=RТ; ax возрастает при a>1 и ax убывает при 0<a<1; напоминаются основные свойства степеней. Т.о. показательная функция есть систематизация, обобщение и расширение знаний учащихся о свойствах степени.

В качестве приложения свойств показательной функции рассматриваются решения простейших показательных уравнений и неравенств.

Логарифмическая функция – новый математический объект для учащихся. К понятию логарифма учащихся подводят в процессе решения показательного уравнения ax=b в том случае, если b нельзя представить в виде степени с основанием a. Наше уравнение в случае b>0 имеет единственный корень, который называют логарифмом b по основанию a и обозначают logab, т.е. alogab=b. Одновременно с введением нового понятия учащиеся знакомятся с основным Логарифмическим тождеством. При работе с логарифмами применяются следующие их свойства, вытекающие из свойств показательной функции:

При любом () и любых положительных x и y, выполнены равенства:


1. loga1=0

2. logaa=1

3. logaxy= logax+ logay

4. logax/y= logax- logay

5. logaxp= plogax


При доказательстве используется основное логарифмическое тождество:


x=alogax; y=alogay


Рассмотрим доказательство 3:


xy=alogax a logay=alogax+logay т.е. xy=alogax+logay=alogaxy, ч.т.д.


Основные свойства логарифма широко применяются в ходе преобразования выражений, содержащих логарифмы.

497 (Алгебра и начала анализа, 10-11)

Найти , если:



т.е. равны основания логарифмов, равны значения логарифмов равны логарифмируемые выражения. Этот прием рассуждения в дальнейшем будет применим при решении простейших логарифмических уравнений.


З. Понятие обратной функции и методика его введения


Наиболее доступным введение логарифмической функции можно было бы провести после введения понятия обратной функции. Однако методика изложения темы об обратной функции сложна из-за сложных самого материала. Тема "Понятие об обратной функции" приведена в учебнике "Алгебры и начала анализа. 10-11" и рассчитана на необязательное изучение. В эту тему входят:

1) обратимость функций, связанное с решением следующих задач: вычислить значение функции по данному значению аргумента и найти значение аргументов, при которых функция принимает данное значение . Вторая задача не всегда имеет единственное решение (например, для , ). Функция принимает каждое свое значение в единственной точке области определения, называется обратимой, т.е. если обратима, а число принадлежит , то уравнения имеет решение и притом только одно.

2) Обратная функция – как новое понятие – поясняется на конкретных примерах.

Определение. Пусть - произвольная обратимая функция. Для любого числа из ее области значений имеется в точности одно значение , принадлежащее области определения , такое, что: . Поставив в соответствие каждому это значение , получим новую функцию с областью определения и областью значений .

Задача. Найти функцию, обратную функции



Покажем, что уравнения при любом значении имеет единственное решение .


, где .


Если вспомнить область значения данной функции , то получаем положительный ответ. Таким образом, наша функция обратима и обратная ей функция



Алгоритм решения таких задач: найти и данной функции ; поменять местами в формуле переменные , т.е. получить формулу и из полученного равенства выразить через .

В более сложных случаях (когда функция не является обратимой на всей области определения) следует пользоваться теоремой: об обратной функции:

Если функция f возрастает (или убывает) на промежутке I, то она обратима. Обратная к f функция g, определенная в области значений f, также является возрастающей (или убывающей).

Задача. Найти функции, обратные функции y=x2-3x+2.


x=y2-3y+2=y2-2y*3/2+9/4-9/4+2=(y-3/2)2-¼ => (y-3/2)2=x+1/4, где x≥-1/4 => y1=3/2+(x+1/4)1/2 и y2=3/2-(x+1/4)1/2.

D(y1)= D(y2)=E(x2-3x+2)=[-1/4;+∞)


Для нахождения областей значений обратных функций обратимся к графику, используя следующее свойство:

Графики функции f и обратной к ней функции g симметричны относительно прямой y=x.


x2-3x+2=0 => x1=1; x2=2

xв=3/2; yв=-1/4


0100090000031602000002009601000000009601000026060f002203574d46430100000000000100da6e0000000001000000000300000000000000030000010000006c0000000000000000000000080000001000000000000000000000007a220000a51c000020454d4600000100000300001000000002000000000000000000000000000000900600001a040000b801000013010000000000000000000000000000c0b6060038320400160000000c000000180000000a00000010000000000000000000000009000000100000005101000018010000520000007001000001000000f1ffffff00000000000000000000000090010000000000cc04400022430061006c006900620072006900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001100dc5f11001000000040631100c060110052516032406311003860110010000000a8611100246311002451603240631100386011002000000049642f31386011004063110020000000ffffffff1c05f700d0642f31ffffffffffff0180ffff0180efff0180ffffffff0000000000080000000800004300000001000000000000006000000025000000372e9001cc00020f0502020204030204ef0200a07b20004000000000000000009f00000000000000430061006c00690062007200000000000000000000611100dee32e31e88d0832606411006c6011009c3827310900000001000000a8601100a8601100e878253109000000d06011001c05f7006476000800000000250000000c00000001000000250000000c00000001000000250000000c00000001000000120000000c00000001000000180000000c00000000000002540000005400000000000000000000000800000010000000010000001886d1411886d141000000000d000000010000004c000000040000000000000000000000510100001801000050000000200039040900000046000000280000001c0000004744494302000000ffffffffffffffff5201000019010000000000004600000014000000080000004744494303000000250000000c0000000e000080250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c0218015101040000002e0118001c000000fb02f1ff0000000000009001000000cc0440002243616c6962726900000000000000000000000000000000000000000000000000040000002d010000040000002d010000040000002d0100000400000002010100050000000902000000020d000000320a0d000000010004000000000051011801205909001c000000fb021000070000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d010100040000002d010100030000000000


Из графика видно, что


E(y1)=[3/2;+∞), E(y2)=(-∞;3/2].


4. Методика изучения логарифмической функции, ее свойств и их приложения. Производная показательной и логарифмической функции


Методика изучения логарифмической функции

Изучение логарифмической функции начинается с выделения определения: функцию, заданную формулой называют логарифмической функцией с основанием . Основные свойства выводится из свойств показательной функции:


1. ,


т.к. при решении уравнения


,


т.е. любое положительное число имеет логарифм по основанию .


2. ,


т.к. по определению логарифма любого действительного числа справедливо равенство:


,


т.е. функции вида принимает значение в точке .

3. Логарифмическая функция на всей области определения возрастает (при a>1) или убывает (при 0<a<1).

Покажем, что при a>1 возрастает. Пусть и , надо доказать, что: . Допустим противное, т.е. что . Т.к. показательная функция при a>1 возрастает, то из неравенства следует: , что противоречит выбору . Следовательно: и функция при a>1 – возрастает.

Т.к. при a>1 функция возрастает, то логарифмическая функция положительна при x>1 и отрицательна для 0<x<1 (для основания 0<a<1 – наоборот). На основании рассмотренных свойств строится график этой функции.

Производная показательной и логарифмической функции

Приступая к изучению производной показательной и логарифмической функций, учащиеся знакомятся с новым для них числом e. Необходимость появления этого числа связывается с решением задачи о касательной к графику показательной функции, с угловым коэффициентом, равным 1, т.е. без доказательства принимается следующее утверждение:

существует такое число, больше 2 и меньшее 3 (это число обозначают буквой е), что показательная функция y=ex в точке 0 имеет производную, равную 1, т.е. (eΔx-1)/ Δx à при Δxà0.

Теорема: функция eæ дифференцируема в каждой точке области определения и (ex)'= ex. Опр.: Натуральным логарифмом называется логарифмом по основанию е:


ln x = logex


Верно соотношение:


eln a=a => ax=(eln a)x=ex ln a.


Теорема: показательная функция аx дифференцируема в каждой точке области определения, и:

(ax)'=axln a


Дифференцируемость логарифмической функции следует из того, что: графики у=ах и у=log ax симметричны относительно у=х. Показательная функция дифференцируема в любой точке, а ее производная не обращается в нуль, график показательной функции имеет негоризонтальную касательную в каждой точке. Поэтому и график логарифмической функции имеет невертикальную касательную в любой точке, а это равносильно дифференцируемости логарифмической функции на ее области определения.

Производная логарифмической функции для любого х из области определения находится по формуле: ln'x=1/x.


x=eln x => x'=(eln x)', n/r/ x'=1 => (eln x)'=1 => eln x(ln x)'=1 => ln'x=1/eln x=1/x.


Заключение


Изучение темы "Показательная, логарифмическая и степенная функции" в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами:

Обобщение понятия о степени; понятие о степени с иррациональным показателем; решение иррациональных уравнений и их систем; показательная функция, ее свойства и график; основные показательные тождества:


; ;


тождественные преобразования показательных выражений; решение показательных уравнений, неравенств и систем; понятие об обратной функции; логарифмическая функция, ее свойства и график; основные логарифмические тождества:


; ;


тождественные преобразования логарифмических выражений; решение логарифмических уравнений, неравенств и систем; производная показательной функции; число е и натуральный логарифм; производная степенной функции; дифференциальное уравнение радиоактивного распада.


Литература


1. К.О. Ананченко "Общая методика преподавания математики в школе", Мн., "Унiверсiтэцкае",1997г.

2.Н.М.Рогановский "Методика преподавания в средней школе", Мн., "Высшая школа", 1990г.

3.Г.Фройденталь "Математика как педагогическая задача",М., "Просвещение", 1998г.

4.Н.Н. "Математическая лаборатория", М., "Просвещение", 1997г.

5.Ю.М.Колягин "Методика преподавания математики в средней школе", М., "Просвещение", 1999г.

6.А.А.Столяр "Логические проблемы преподавания математики", Мн., "Высшая школа", 2000г.


1. Реферат на тему Double Standard Essay Research Paper Double StandardAs
2. Реферат Роль менеджера в организации
3. Курсовая на тему Организационная структура управления маркетингом
4. Реферат Имидж руководителя. Технология личного обаяния
5. Сочинение на тему Исповедальная поэма Н А Некрасова Уныние 1874 проблематика поэтика история восприятия
6. Реферат Комплекс Эдипа З.Фрейд об основаниях культуры и религии
7. Курсовая Особенности редакторской подготовки к изданию пособия
8. Реферат на тему What Is The Effect Of Increasing The
9. Реферат Самомассаж 3
10. Реферат Статистика 17