Реферат

Реферат на тему Технология производства хлористого винила гидрохлорированием ацетилена в газовой фазе

Работа добавлена на сайт bukvasha.net: 2015-07-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024


Министерство Образования и Науки РФ

Казанский Государственный Технологический Университет

Кафедра ОХТ

Технология производства хлористого винила гидрохлорированием ацетилена в газовой фазе

Казань

2008

Теоретическая часть

Технологическая схема производства хлористого винила

Гидрохлорирование ацетилена можно проводить в жидкой или в газовой фазе. При гидрохлорировании ацетилена в газовой фазе в качестве катализатора используют активный уголь, пропитанный солянокислым или водным раствором хлорной ртути (10% от количества угля).

Хлорная ртуть реагирует с ацетиленом, образуя промежуточное ртутьорганическое соединение:

CH H

½ ½

CH º CH + HgCl2 ® C = C

½ ½

H HgCl

При взаимодействии с этим соединением хлористого водорода образуется хлористый винил и регенерируется хлорная ртуть:

Cl H

½ ½

C = C + HCl ® CHCl = CH2 + HgCl2

½ ½

H HgCl

Ацетилен, направляемый на гидрохлорирование, предварительно подвергают осушке, а для удаления влаги из катализатора через него перед гидрохлорированием пропускают хлористый водород. Образующаяся соляная кислота стекает, не вымывая сулему из угля.

В процессе гидрохлорирования применяется синтетический высококонцентрированный хлористый водород, который должен быть тщательно очищен от свободного хлора, так как при реакции ацетилена с хлором происходит взрыв. Благодаря применению концентрированного хлористого водорода оборотный ацетилен значительно меньше разбавляется инертными газами; в связи с этим облегчается конденсация хлористого винила и уменьшаются его потери с отходящими газами. Для наиболее полного связывания ацетилена, присутствие которого в продуктах реакции крайне нежелательно, в исходной газовой смеси должен быть избыток хлористого водорода (5—10 объемн.%).

Технологическая схема синтеза хлористого винила из ацетилена и хлористого водорода в газовой фазе приведена на рисунке 1. Концентрированный ацетилен (97—99%-ный), очищенный от РН3, NH3 и других вредных примесей, компрессором 2 нагнетается в систему под избыточным давлением 0,5 ат и охлаждается до 3— 5° С в холодильнике 4 рассолом, циркулирующим в межтрубном пространстве. После отделения в сепараторе 5 от сконденсированной влаги ацетилен поступает на окончательную осушку в аппарат 6, заполненный твердой едкой щелочью. Осушенный ацетилен смешивается с сухим хлористым водородом в смесителе 7. Газовая смесь поступает в трубчатый контактный аппарат 8, предварительно нагретый до 110—120°С горячим маслом, циркулирующим в межтрубном пространстве аппарата.

Реакция образования хлористого винила протекает с выделением тепла (26 ккал/моль). Избыточное тепло отводится циркулирующим в межтрубном пространстве, контактного аппарата 8 маслом или водой, которые охлаждаются до 70°С в выносном холодильнике (на схеме не показан). По мере старения катализатора температуру процесса постепенно повышают до 180°С.

При повышенных температурах хлорная ртуть начинает возгоняться. Так как у входа в реактор реакция протекает наиболее интенсивно, пары сулемы вместе с исходными газами и продуктами реакции начинают перемещаться вдоль катализаторных труб, а в менее горячей части пары сулемы конденсируются. В результате этого создается как бы «подвижный фронт» катализатора. При исчерпывании сулемы из активного угля каталитическая активность понижается и в контактных газах появляется несвязанный ацетилен.

Было предложено для увеличения срока службы катализатора периодически изменять направление движения реакционной смеси на обратное — в этом случае сулема должна была бы перемещаться от одного конца катализаторной трубы к другому, а затем в обратном направлении. Если процесс проводить при температурах до 120°С, потери сулемы в значительной мере уменьшаются.

Появление в контактных газах свободного ацетилена указывает на значительное понижение активности катализатора и на необходимость замены его свежим. Выгрузка отработанного катализатора из контактного аппарата производится пневматически — путем отсасывания через гибкий шланг, присоединенный к вакуумсборнику, через систему циклонов и сепараторов.

В контактном аппарате 8, кроме основной реакции гидрохлорирования, протекают и побочные реакции, в частности образование несимметрического дихлорэтана в результате присоединения хлористого водорода к хлористому винилу по правилу Марковникова:

CHCl = CH2 = HCl ® CHCl2 ¾ CH3

В результате гидратации ацетилена образуется также некоторое количество ацетальдегида. Поэтому в контактных газах, содержащих примерно 93 вес.% хлористого винила, 5 вес.% хлористого водорода и 0,5 вес.% ацетилена, присутствует 0,3 вес.% паров несимметрического дихлорэтана и 0,3 вес.% ацетальдегида. Эта смесь для удаления хлористого водорода поступает насадочный скруббер 9 из углеродистой стали, футерованный изнутри поливинилхлоридом. В скруббере 10, орошаемом 40%-ным раствором щелочи, из газов удаляется двуокись углерода.

Рисунок 1.

Схема производства хлористого винила газофазным гидрохлорированием ацетилена:

      1. гидравлический затвор;

      2. ротационный водокольцевой компрессор;

      3. водоотделитель;

4, 11, 17- холодильники;

5- сепаратор;

6, 12- аппараты для осушки;

7- смеситель

8- контактный аппарат

9, 10- скрубберы

13- дистилляционная колонна

14- конденсатор

15- аппарат для выделения газа

16- отгонная колонна

18- сборник хлористого винила

После щелочной промывки контактный газ охлаждается до —10°С рассолом (температура рассола —30° С) в холодильнике 11, где происходит вымораживание большей части влаги, и поступает в осушитель 12, заполненный твердой кусковой щелочью. Образующийся раствор щелочи периодически, отводится из нижней части осушителя и используется для промывки газов в скруббере 10. В осушителе 12 контактный газ полностью очищается от влаги и большей части ацетальдегида. Очистку хлористого винила от дихлорэтана и остатков ацетальдегида проводят путем дистилляции в тарельчатой колонне 13, орошаемой жидким хлористым винилом, охлажденным до —30° С. Кубовая жидкость из колонны 13 может быть использована как растворитель.

Выходящий из колонны 13 хлористый винил конденсируется в кожухо-трубном конденсаторе 14, охлаждаемом рассолом (температура рассола —35° С); жидкий хлористый винил самотеком поступает в куб аппарата 15. Верхняя часть этого аппарата представляет собой колонну-холодильник, охлаждаемую аммиаком, испаряющимся при разрежении и —55°С. Здесь из хлористого винила отгоняются растворенные ацетилен и инертные газы. Из кубовой части аппарата 15 некоторое количество жидкого хлористого винила поступает на орошение колонны 13, а основная часть его перетекает в насадочную колонну 16 для окончательной очистки от ацетилена. Верхняя часть колонны 16 представляет собой рассольный холодильник (температура —30°С). Выходящий из нее газ, содержащий 1—5% ацетилена, возвращается в колонну 13. Из куба колонны 16 непрерывно вытекает очищенный жидкий хлористый винил. На 1 т 100%-ного хлористого винила, получаемого описанным способом, расходуется около 0,45 г ацетилена, 0,67 т хлористого водорода и 0,2—0,5 кг сулемы. Синтез хлористого винила из ацетилена и хлористого водорода в газовой фазе отличается большими достоинствами (непрерывностью процесса, простотой аппаратурного оформления, высоким коэффициентом использования исходных соединений), однако недостатком этого процесса является относительная дороговизна ацетилена по сравнению с другими исходными углеводородами.

Практическая часть

Материальный баланс процесса

В основу расчета принимаем следующие реакции:

C2H2 + HCl ® CHCl = CH2

C2H2 +2HCl ® CHCl2 ¾ CH3

C2H2 + H2O ® CH3 ¾ CHO

Условия задачи:

  1. Производительность установки по хлорвинилу – сырцу 200 т/сут.

  2. Состав хлорвинила сырца % масс.

    • хлористый винил 95 %

    • дихлорэтан 4,0 %

    • ацетальдегид 1,0 %

  3. Концентрация ацетилена (примесь CO2) 99 % об.

  1. Конверсия ацетилена – 98 %;

  2. Избыток НCl по сравнению со стехиометрическим 10 % об.

  3. Потери хлористого винила от производительности – 1,5 %.

Решение:

Схема потоков:


C2H2;CO2;HCl;H2O C2H2;CO2;HCl;C2H3Cl;C2H4Cl;CH3COH


Приход

Расход


кг/час

кмоль/час

кг/час

кмоль/час

C2H2

3553,25

136,66

71,07

2,73

CO2

22,08

1,38

22,08

1,38

HCl

5429,23

148,95

493,53

13,54

С2Н3Сl

0

0

7916,66 + 118,75

128,67

C2H3Cl

0

0

333,33

3,37

C2H4Cl2

0

0

83,33

1,89

Н2О

34,02

1,89

0

0


å1=9038,58


å2=9038,75


1) Производительность по хлорвинилу – сырцу 200 т/сут;

m(сырца) = 200·1000/24 = 8333,33кг/час

2)Состав хлорвинила – сырца (производительность:

хлористый винил:

m(C2H3Cl) = 8333,33·95/100 = 7916,66 кг/час;

3) Учитывая потери хлорвинила от производительности 1,5 % масс.

mпотери(C2H3Cl) = 7916,66·1,5/100 = 118,75 кг/час;

mвсего(C2H3Cl) = 7916,66 + 118,75 = 8035,41 кг/час;

wвсего(C2H3Cl) = 8035,41 / 62,45 = 128,67кмоль/час;

4) Состав хлорвинила – сырца:

дихлорэтан:

m (C2H4Cl2) = 8333,33·4/100 = 333,33 кг/час;

w(C2H4Cl2) = 333,33 / 98,9 = 3,37кмоль/час;

ацетальдегид:

m (C2H4О) = 8333,33·1/100 = 333,33 кг/час;

w(C2H4О) = 83,33 / 44 = 1,89кмоль/час;

5) Количество ацетилена, пошедшего на образование винилхлорида:

w1(C2H2) = wвсего(C2H3Cl) = 128,67кмоль/час;

6) Количество хлороводорода, пошедшего на образование винилхлорида:

w1(HCl) = w1(C2H2) = 128,67кмоль/час;

7) Количество ацетилена, пошедшего на образование дихлорэтана:

w2(C2H2) = w (C2H4Cl2) = 3,37кмоль/час;

8) Количество хлороводорода, пошедшего на образование дихлорэтана:

w2(HCl) = 2· w2 (C2H2) = 3,37 · 2 = 6,74 кмоль/час;

9) ацетальдегида

w32Н2) = w2 (C2H4О) = 1,89 кмоль/час;

10) воды:

w2О) = w32Н2) = 1,89 кмоль/час;

m (Н2О)=1,89*18=34,02кг/ч

11)Количество С2Н2 прореагировавшего:

w02Н2)= w1+ w2+ w3=128,67+3,37+1,89=133,93кмоль/час;

m02Н2)=133,93*26=3482,18кг/час;

12) Учитывая конверсию 98% ацетилена,всего было подано:

3482,18 - 98%

Х - 100%

Х= mвсего2Н2)=3482,18*100/98=3553,25кг/ч

wвсего2Н2)=3553,25/26=136,66кмоль/час

13) Количество и масса непрореагировало ацетилена:

mнепр2Н2)=3553,25-3482,18=71,07кг/час

wнепр2Н2)=71,07/26=2,73

14) Количество хлороводорода,пошедшее на обе реакции:

w0(HCl)= w1+ w2 =128,67+6,74=135,41кмоль/час

Учитывая избыток по сравнению со стехиометрией 10% об.:

V0(HCl)= w0(HCl)*22,4=135,41*22,4=3033,18м3/час

3033,18м3/час - 100%

Х - 10%

Х= Vизб(HCl)= 3033,18м3/час*10/100=303,32м3/час

Vвсего(HCl)= V0(HCl)+ Vизб(HCl)=3033,18+303,32=3336,5м3/час

wизб(HCl)=303,32/22,4=13,54кмоль/ч

mизб(HCl)=13,54*36,45=493,53кг/ч

wвсего(HCl)=3336,5/22,4=148,95кмоль/ч

mвсего(HCl)=148,95*36,45=5429,23кг/ч

15)Масса и количество примеси углекислого газа в ацетилене 1% об.:

V(С2Н2)= w2Н2)*22,4=136,66*22,4=3061,18м3/час

3061,18м3/час - 99%

Х - 1%

Х= V(СО2)=3061,18*1/99=30,92м3/час

V(СО2)=30,92/22,4=1,38кмоль/час

m(СО2)=1,38*44=22,08кг/час

Технологические и технико-экономические показатели процесса

  1. Производительность установки установки: 9838.58 кг/ч

  2. Конверсия эцетилена: 98 %

3.Фактический выход C2H3Cl:

QФ = m(C2H3Cl) = 7916.66+118.75 кг;

4.Теоретический выход C2H3Cl:

Mr(С2Н2) ¾ Mr(C2H3Cl), 26 ¾ 62.45,

mпод(C2H2) ¾ QТ; 3553.25 ¾ QТ;

QТ = 8534.63 кг;

Выход C2H3Cl по ацетилену:

b С2Н2= QФ / QТ * 100% = 94.15 %

5. Теоретический выход C2H3Cl рассматриваемый, исходя из количество превращенного C2H2

Mr(C2H2) ¾ Mr(C2H3Cl), 26 ¾ 62.45,

mпр(C2H2) ¾ QТ'; 3482.18 ¾ QТ';

QТ' = 8363.93кг;

b' C2H2 = QФ / QТ' * 100% =96.07%

6. Теоретические расходные коэффициенты по сырью:

по C2H2:

sт = Mr(C2H2) / Mr(C2H3Cl) = 26/62.45 = 0,416 кг/кг;

по НСl:

sт: = Mr(НСl) / Mr(C2H3Cl) = 36.45/62.45 = 0.584 кг/кг.

6. Фактические расходные коэффициенты:

по C2H2:

sф = mтехн(C2H2) / m(C2H3Cl) = 3575.33/8035,41 = 0.445 кг/кг;

по НСl:

sф = mтехн(НСl) / m(C2H3Cl) = 5429.23/8035.41 = 0.676 кг/кг.

Список литературы

  1. Кутепов А.М., Бондарева Т.И., Беренгартен М.Г. Общая химическая технология. М.:Высш. Школа, 2005. 520с.

  2. Расчеты химико-технологических процессов / Под ред. И.П. Мухленова. Л.: Химия, 2008, 300с.


1. Реферат Банковская система Канады
2. Практическая работа на тему Расчеты общей продольной прочности проектируемого контейнеровоза
3. Доклад Товарные запасы и товарооборачиваемость торгового предприятия комплексный анализ и пути оптими
4. Сочинение на тему Новаторство Гоголя как драматурга
5. Реферат Модернизация музыкального образования на материалах музыкальной школы г. Советска Кировской обла
6. Реферат на тему Eastern Airlines Faces Bankruptcy Essay Research Paper
7. Реферат Сестринский процесс при ангинах
8. Реферат Организация производства 13
9. Реферат Анализ картин эпохи Возрождения
10. Реферат на тему Международные стандарты в бухгалтерии