Реферат

Реферат Эволюция Земли

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 11.11.2024


Эволюция Земли

Вопрос ранней эволюции Земли тесно связан с теорией ее происхождения. Сегодня известно, что наша планета образовалась около 4,5 млрд. лет назад. В процессе формирования Земли из частиц протопланетного облака постепенно увеличивалась ее масса. Росли силы тяготения, а следовательно, и скорости частиц, падавших на планету. Кинетическая энергия частиц превращалась в тепло, и Земля все сильнее разогревалась. При ударах на ней возникали кратеры, причем выбрасываемое из них вещество уже не могло преодолеть земного тяготения и падало обратно.

Чем крупнее были падавшие объекты, тем сильнее они нагревали Землю. Энергия удара освобождалась не на поверхности, а на глубине, равной примерно двум поперечникам внедрившегося тела. А так как основная масса на этом этапе поставлялась планете телами размером в несколько сот километров, то энергия выделялась в слое толщиной порядка 1000 км. Она не успевала излучиться в пространство, оставаясь в недрах Земли. В результате температура на глубинах 100–1000 км могла приблизится к точке плавления. Дополнительное повышение температуры, вероятно, вызвал распад короткоживущих радиоактивных изотопов.

По-видимому, первые возникшие расплавы представляли собой смесь жидких железа, никеля и серы. Расплав накапливался, а затем вследствие более высокой плотности просачивался вниз, постепенно формируя земное ядро. Таким образом, дифференциация (расслоение) вещества Земли могла начаться еще на стадии ее формирования. Ударная переработка поверхности и начавшаяся конвекция, несомненно, препятствовали этому процессу. Но определенная часть более тяжелого вещества все же успевала опустится под перемешиваемый слой. В свою очередь дифференциация по плотности приостанавливала конвекцию и сопровождалась дополнительным выделением тепла, ускоряя процесс формирования различных зон в Земле.

Предположительно ядро образовалось за несколько сот миллионов лет. При постепенном остывании планеты богатый никелем железоникелевый сплав, имеющий высокую температуру плавления, начал кристаллизуются – так (возможно) зародилось твердое внутреннее ядро. К настоящему времени оно составляет 1,7% массы Земли. В расплавленном внешнем ядре сосредоточено около 30% земной массы.

Развитие других оболочек продолжалось гораздо дольше и в некотором отношении не закончилось до сих пор.

Литосфера сразу после своего образования имела небольшую толщину и была очень неустойчивой. Она снова поглощалась мантией, разрушалась в эпоху так называемой великой бомбардировки (от 4,2 до 3,9 млрд. лет назад), когда Земля, как и Луна, подвергалась ударам очень крупных и довольно многочисленных метеоритов. На Луне и сегодня можно увидеть свидетельства метеоритной бомбардировки – многочисленные кратеры и моря (области, заполненные излившейся магмой). На нашей планете активные тектонические процессы и воздействие атмосферы и гидросферы практически стерли следы этого периода.

Около 3,8 млрд. лет назад сложилась первая легкая и, следовательно, «непотопляемая» гранитная кора. В то время планета уже имела воздушную оболочку и океаны; необходимые для их образования газы усиленно поставлялись из недр Земли в предшествующий период. Атмосфера тогда состояла в основном из углекислого газа, азота и водяных паров. Кислорода в ней было мало, но он вырабатывался в результате, во-первых, фотохимической диссоциации воды и, во-вторых, фотосинтезирующей деятельности простых организмов, таких как сине-зеленые водоросли.

600 млн. лет назад на Земле было несколько подвижных континентальных плит, весьма похожих на современные. Новый сверхматерик Пангея появился значительно позже. Он существовал 300–200 млн. лет назад, а затем распался на части, которые и сформировали нынешние материки.

Что ждет Землю в будущем? На этот вопрос можно ответить лишь с большой степенью неопределенности, абстрагируясь как от возможного внешнего, космического влияния, так и от деятельности человечества, преобразующего окружающую среду, причем не всегда в лучшую сторону.

В конце концов недра Земли остынут до такой степени, что конвекция в мантии и, следовательно, движение материков (а значит и горообразование, извержение вулканов, землетрясения) постепенно ослабнут и прекратятся. Выветривание со временем сотрет неровности земной коры, и поверхность планеты скроется под водой. Дальнейшая ее судьба будет определяться среднегодовой температурой. Если она значительно понизится, то океан замерзнет и Земля покроется ледяной коркой. Если же температура повысится (а скорее всего именно к этому и приведет возрастающая светимость Солнца), то вода испарится, обнажив ровную поверхность планеты. Очевидно, ни в том, ни в другом случае жизнь человечества на Земле будет уже невозможна, по крайней мере в нашем современном представлении о ней.

Результат эволюции

В процессе эволюции возникли атмосфера и гидросфера Земли.

Атмосфера Земли: в настоящее время Земля обладает атмосферой массой примерно 5,15*1018 кг, т.е. менее миллионной доли массы планеты. Вблизи поверхности она содержит 78,08% азота, 20,95% кислорода, 0,94% инертных газов, 0,03% углекислого газа и в незначительных количествах другие газы. Давление и плотность в атмосфере убывают с высотой. Половина воздуха содержится в нижних 5,6 км, а почти вся вторая половина сосредоточена до высоты 11,3 км. На высоте 95 км плотность воздуха в миллион раз ниже, чем у поверхности. На этом уровне и химический состав атмосферы уже иной. Растет доля легких газов, и преобладающими становятся водород и гелий. Часть молекул разлагается на ионы, образуя ионосферу. Выше 1000 км находятся радиационные пояса. Их тоже можно рассматривать как часть атмосферы, заполненную очень энергичными ядрами атомов водорода и электронами, захваченными магнитным полем планеты.

Гидросфера Земли: вода покрывает более 70% поверхности земного шара, а средняя глубина Мирового океана около 4 км. Масса гидросферы примерно 1,46*1021 кг. Это в 275 раз больше массы атмосферы, но лишь 1/4000 от массы всей Земли. Гидросферу на 94% составляют воды Мирового океана, в которых растворены соли (в среднем 3,5%), а также ряд газов. Верхний слой океана содержит 140 трлн. тонн углекислого газа, а растворенного кислорода – 8 трлн. тонн.

Основные события в развитии Земли в MZ и KZ

Мезозойский этап развития

Кайнозойский этап развития

Основные закономерности геологического развития Земли

Полезные ископаемые

Мезозойский этап истории Земли охватывает мезозойскую эру длительностью 170 ±10 млн. лет, которая в свою очередь подразделяется на триасовый, юрский и меловой периоды.

Вспомним, чем завершился Палеозойский этап в истории Земли.

В результате герцинского этапа складчатости завершился геосинклинальный цикл развития Урало-Монгольского (Урал), Атлантического (Аппалачи), Арктического (Иннуитская) поясов и отдельных частей Тихоокеанского (В. Австралия) и Палеотетиса (западная часть). В результате сформировался суперматерик-Пангея-2. Происходит вымирание почти всех древнейших животных - руководящих форм палеозоя.

В мезозое происходит обновление органического мира, который является промежуточным между палеозоем и кайнозоем. Мезозой – это эра рептилий и моллюсков, в юре появляются древние птицы, а в мелу – расцвет фораминифер и динозавров. В триасе появляются первые млекопитающие. Для растений – это расцвет голосеменных, а в меловой период – появление покрытосеменных.

Особенности осадконакопления

Для Триаса типичны континентальные красноцветные толщи и коры выветривания. Морские осадки локализовались в геосинклинальных областях. В широких масштабах проявился трапповый магматизм на платформах – Сибирской, Ю.-Американской и на юге Африканской. Выделяют три типа – эксплозивный, лавовый и интрузивный (силлы).

В Юре осадки более разнообразны. Среди морских – кремнистые, карбонатные, глинистые и глауконитовые песчаники; континентальных – преобладают отложения коры выветривания, а в лагунах формируются угленосные толщи. Магматизм проявился в геосинклинальных областях – Кордильеры и Верхояно-Чукотской, а трапповый – на платформах – Ю. Американской и Африканской.

Особенностью меловых отложений является максимальное накопление писчего мела (состоит из фораминифер и остатков панцирей водорослей кокколитофорид).

Палеогеография мезозоя

С образованием суперматерика Пангея-2 связана величайшая регрессия моря в истории Земли. Лишь небольшие участки, прилегающие к геосинклинальным поясам покрывались неглубокими морями (области, прилегающие к Кордильерам и Верхояно-Чукотской геосинклинали). Герцинские складчатые пояса представляли области расчлененного рельефа.

Климат Триаса – аридный континентальный, лишь в приморских областях (Колыма, Сахалин, Камчатка и др.) – умеренный. В конце Триаса начинается трансгрессия моря, которая широко проявилась в поздней Юре. Море распространялось в западную часть Северо-Американской платформы, почти на всю В.-Европейскую платформу, в северо-западной и восточной частях Сибирской платформы. Максимальная трансгрессия моря проявилась в верхнем Мелу. Для климата этих периодов характерно чередование влажного тропического и сухого аридного.

Строение Земной коры в Мезозое

Для мезозоя характерно проявление перестройки Земной коры в один тектонический этап – Киммерийский.

В конце Триаса начинается раскол суперматерика Пангея-2. Группа платформ северного полушария отходит от Гондваны и происходит новое заложение геосинклинального пояса на месте Палеотетиса.

На рубеже Триаса и Юры начинается раскол континента Лаврентий на Сев.-Американскую и В.-Европейскую платформы. Он начинается с процесса заложения рифтовой зоны в Северной Атлантике, которая с конца Юры распространяется на Центральную и Южную Атлантику. Морской бассейн начал формироваться с ранней Юры в Северной Атлантике, а в конце раннего Мела практически сформировалась система Атлантического океана. Параллельно шло формирование Индийского океана, а все это вместе знаменует раскол Гондваны. С конца Юры начинается обособление Африканской платформы, от которой затем отделились Индостанская и Австралийская платформы.

Геосинклинальный режим существовал в Тихоокеанском поясе и представлен Верхояно-Чукотской и Кордильерской геосинклиналями. Особенность их формирования – это положение по окраинам платформ, накопление мощной толщи флишевых отложений. Завершение геосинклинального этапа сопровождалось внедрением гранитов и складкообразованием. После горообразования геосинклинальный режим в этих частях Тихоокеанского пояса сохраняется, только область его развития смещается в сторону океанской плиты.

По-другому происходило развитие Средиземноморского геосинклинального пояса, в котором выделяют Альпийско-Гималайскую, Тибетско-Индостанскую и Индонезийскую области. Каждая из них характеризуется своими особенностями развития.

Альпийская область подразделялась на три широтные зоны – две внешние с миогеосинклинальным типом разреза и одну внутреннюю – эвгеосинклинальную, которая в свою очередь подразделялась на систему глубоководных прогибов с ультраосновным магматизмом и систему поднятий. На рубеже Юры и Мела горообразовательные движения проявились в восточной части (Кавказ, Иран, Афганистан) и сопровождались внедрением гранитной магмы.

В Тибетско-Индостанской области геосинклинальный режим в триасе и юре являлся продолжением позднепалеозойского, т.е. здесь происходили завершающие этапы геосинклинального развития, которые в киммерийский тектонический этап завершились формированием складчатости, и впоследствии развивались как молодые платформы.

В Мезозое области проявления герцинской и каледонской складчатости вступили в платформенный этап развития – горные системы интенсивно разрушались и поставляли обломочный материал в краевые прогибы, межгорные впадины и платформенный чехол. Для Урало-Монгольского пояса – это Предуральский краевой прогиб, Тимано-Печерская, Западно-Сибирская и Туранская плиты.

На древних платформах наряду с формированием осадочного чехла происходят глыбовые движения или эпиплатформенный орогенез. Особенно мощно он проявился на Северо-Американской платформе с образованием Скалистых гор. На Сибирской и Африканской платформах мощно проявился трапповый магматизм, с образованием силлов и кимберлитовых трубок.

К концу мелового периода происходит новый раскол Гондваны – Австралия вместе с Антарктидой перемещалась на юг, Африка двигалась на север, Ю.-Америка начала движение на запад, хотя еще и не полностью откололась от Африки.

Начинается верхнемеловая великая трансгрессия моря. На рубеже мезозоя и кайнозоя вымирают рептилии, аммониты и многие другие виды животных. Существует много гипотез, объясняющих это явление, но какой-то ясности пока нет.

В Киммерийский (Мz) этап развития Земной коры – разнообразие полезных ископаемых различного генезиса. На платформах формируются:

угленосные толщи (Сибирь, Китай, Австралия);

эпоха оолитовых Fe руд (Зап. Сибирь, Германия, Франция);

бокситы (Урал, Сибирь, Ср. Азия, Франция, Испания и др.);

фосфориты (пояс от Марокко до Сирии);

соли Туркмении и Сев. Америки.

С трапповым магматизмом связаны:

Cu-Ni месторождения Норильской группы,

алмазы в кимберлитах Африки, Якутии.

В геосинклинальных складчатых областях с гранитными интрузиями связаны многочисленные месторождения Sn, W, Mo, Cu, Pb, Au, Sb, Сев. Америки, Китая, Индонезии, Приморья.

Особенность мезозоя – формирование мощных толщ писчего мела

Нефть и газ образуют крупные месторождения в Зап. Сибири, Саудовской Аравии, Кувейте, Иране, Ливии и др.

Кайнозойский этап истории Земли охватывает Кайнозойскую эру длительностью ~ 65 млн. лет и подразделяющуюся на три периода – палеогеновый, неогеновый и четвертичный (или антропогеновый)

Особенности органического мира Кайнозоя.

1. Обновляется фауна морей – появляются и широко распространяются новые виды простейших (Нуммулиты), двустворчатых и брюхоногих моллюсков, это расцвет шестилучевых кораллов, морских ежей и лилий; костистых и хрящевых рыб (акулы). Из млекопитающих – киты, тюлени, дельфины. От рептилий в Кайнозое сохранились черепахи, крокодилы, змеи и ящерицы.

На суше господствующие позиции у млекопитающих и птиц. В конце Палеогена появляются древние обезьяны, в конце четвертичного периода – человек разумный.

С середины неогена устанавливается господство покрытосеменных растений.

2. Представители органического мира начинают обособляться по провинциям. Это связано с разделением и перемещением отдельных континентов, установлением климатической зональности и др. факторами.

Палеогеографические особенности

1. В Палеогене происходит последняя крупная трансгрессия моря. Она была по охвату территории меньше верхнемеловой и распространялась на участки материков, прилегающих к Средиземноморскому геосинклинальному поясу и на Западно-Сибирскую плиту. Климатическая зональность была смещена к северу – тропики доходили до Гренландии.

2. С конца палеогена начинается регрессия моря, происходит постепенное смещение климатических поясов к югу. Начинается похолодание и усиливается контрастность климата.

3. В антропогене возникают центры оледенения – обширные территории Сев.-Америки, Европы, Азии, Антарктиды покрываются толщей материкового льда. Выделяют несколько эпох оледенения, среди которых максимальным по площади было Днепровское в Европе. Кроме влияния на климат, оледенения сыграли важную роль в формировании рельефа и осадконакоплении.

Особенности осадконакопления

1. Многообразие фациальных обстановок отразилось в многообразии типов осадков.

В геосинклинальных областях осадочные породы флишевой формации достигают огромной мощности ~20 км. На платформах широко развиты озерные, речные, эоловые и другие континентальные осадки. В связи с оледенением широкое распространение получили различные типы моренных, озерно-ледниковых и лессовых отложений.

2. Проявление андезитобазальтового вулканизма, связанного с развитием рифтовых поясов на платформах (Африканский, Байкальский и др.)

Строение Земной коры связано с проявлением Альпийского этапа складчатости в неогене. Сформировались складчатые сооружения Альпийско-Гималайского пояса, береговой части Кордильер и Анды. Их сопровождало формирование предгорных прогибов – Предкавказского, Предкарпатского и Мессопотамского.

В западной части Тихоокеанского пояса (Камчатка и др. области) продолжается геосинклинальная стадия развития.

На рубеже Мела и Палеогена происходит окончательный раскол Гондваны – Австралия отделяется от Антарктиды, Африка и Южная Америка расходятся окончательно. Северо-Американская подходит к Сибирской в районе Берингова моря.

На молодых и древних платформах в неогене происходят колоссальные процессы эпиплатформенного орогенеза. Они сопровождаются глыбовыми поднятиями участков, которые определили формирование современного рельефа.

Кайнозойский этап в формировании полезных ископаемых – на фоне разнообразия сформировавшихся месторождений следует выделить:

коры выветривания Fe, Mn, Ni, Co и бокситов;

осадочные руды Fe и Mn (Керченское, Чиатурское и др.);

1/3 мировых запасов нефти (Кувейт, Кавказ, Туркмения, Иран, Ирак, Саудовская Аравия, Каспий);

четвертичные россыпи Au, Pt, Sn, алмазов и др.

С альпийской складчатостью связаны своеобразные золотосеребряные месторождения.

Основные закономерности геологического развития Земли

1. Цикличность (периодичность) геологических процессов.

Она заключается в том, что геологические явления и процессы, сменяя друг друга во времени, образуют цепь событий, в которой каждое звено – это законченный цикл. Например, глобальный цикл – формирование суперматерика Пангея и его раскол. Таких циклов в истории земной коры было 2, сейчас протекает третий.

В свою очередь каждый из таких глобальных циклов состоит из нескольких тектонических циклов (или этапов) развития земной коры. Начало каждого этапа – заложение геосинклинальных подвижных поясов, их интенсивное прогибание, в которое вовлекаются соседние платформы. Начинается морская трансгрессия. Инверсия в геосинклинальных поясах сопровождается складкообразованием, вздыманием земной коры и горообразованием. В этот процесс вовлекаются соседние участки платформы – начинается регрессия моря. Каждый тектонический этап завершается увеличением объема континентальной земной коры и увеличением объема платформенных участков земной коры.

2. Направленность геологического развития

а. Наиболее наглядно эта закономерность прослеживается в развитии континентальной коры. От древних этапов к более молодым и современным мы отмечаем сокращение количества геосинклинальных поясов. А по мере прекращения геосинклинального режима складчатая область присоединяется к более древней платформе, тем самым, увеличивая её площадь и объем континентальной коры.

б. Направленность процесса формирования геосинклиналей в разные геотектонические этапы. Она заключается в закономерном проявлении каждого этапа и стадии и соответствующих каждому этапу набору геологических формаций.

в. Эволюция органического мира – яркий пример направленности развития от примитивных организмов к наиболее высоко организованным – венец человек разумный.

г. Сокращение длительности тектонических этапов – если Докембрийский этап длился млрд. лет, то к Mz чуть больше 100 млн. лет

Полезные ископаемые

Формирование полезных ископаемых в Земной коре проходило во все геотектонические эпохи.

Докембрийский этап. Образование полезных ископаемых связано с грандиозными по масштабам процессами магматизма и метаморфизма.

Огромные запасы Fe руд сосредоточены в железистых кварцитах (джеспилитах). Это – КМА, Кривой Рог, Канада и т.д.

С метаморфическими комплексами пород связаны месторождения слюд (мусковита и флогопита) в Карелии, Сибири, Индии, Бразилии.

С интрузиями ультраосновного и основного составов связано образование месторождений Платины, Хромита в Ю. Африке (Бушвельдский и Великая Дайка), Cu-Ni – Печенга, Мончегорское, Ю. Африка, С. Америка

С осадочными породами формировались месторождения:

осадочных Fe руд (Бакальская группа, Ю. Якутия и др.),

медистых песчаников (Удокан, Ю. Африка),

Au-конгломераов с U – Витватерсранд, Блайнд-Ривер (Канада),

Mn руды – ЮАР, Гана, Индия

Нефтеносные горизонты Лено-Тунгусской впадины – самые древние вендского возраста.

Каледонский этап – основная часть полезных ископаемых формировалась с осадочным чехлом платформ. Выделяют эпохи:

накопления фосфоритов в раннем кембрии Ср. Азия, Китай, Прибалтика, Вьетнам),

накопления солей – Иркутская обл., Мичиган (США),

формирование газо-нефтеносных горизонтов (м-е Хасси-Мессауд в Алжирской Сахаре, штатыКанзас и Оклахома),

горючих сланцев – Прибалтика,

оолитовых Fe руд США и Канады.

В складчатых областях с интрузиями ультраосновного состава связаны месторождения хромита (Ю. Урал), асбеста (Тува, Канада), а с интрузиями кислого состава – золоторудные месторождения Сев. Казахстана и Кузнецкого Алатау.

Герцинский этап – формируются наиболее разнообразные по генезису и полезным компонентам полезные ископаемые. Появляются новые группы – коры выветривания и ископаемые угли.

Самые древние – Девонские месторождения угля – о. Медвежий. Наиболее мощно угленакопление происходило в краевых прогибах и на платформах происходило в Карбоне и Перми с образованием Печерского, таймырского, Тунгусского бассейнов, в Китае, Индии и Австралии.

Нефтеносные горизонты формируются в Волго-Уральской провинции, на Тимане, в США, Канаде, Иране.

Пермский период – это эпоха соленакопления – м-е Верхнекамское, Германия, США.

На платформах формируются месторождения бокситов – Тихвинское, Сев. Онежское, Китай.

С раннегеосинклинальным вулканизмом связано образование месторождений медноколчеданных руд на Урале, в Аппалачах; а с периодом завершающего этапа складчатости и образованием магматических тел среднего и кислого составов связано образование гидротермальных месторождений золота на Урале, олова – Корнуолл (Англия), железо- и меднорудных скарновых месторождений (г. Магнитная, Высокая, Краснотуринские и др.).

Киммерийский (Мz) этап развития Земной коры – разнообразие полезных ископаемых различного генезиса. На платформах формируются:

угленосные толщи (Сибирь, Китай, Австралия);

эпоха оолитовых Fe руд (Зап. Сибирь, Германия, Франция);

бокситы (Урал, Сибирь, Ср. Азия, Франция, Испания и др.);

фосфориты (пояс от Марокко до Сирии);

соли Туркмении и Сев. Америки.

С трапповым магматизмом связаны:

Cu-Ni месторождения Норильской группы,

алмазы в кимберлитах Африки, Якутии.

В геосинклинальных складчатых областях с гранитными интрузиями связаны многочисленные месторождения Sn, W, Mo, Cu, Pb, Au, Sb, Сев. Америки, Китая, Индонезии, Приморья.

Особенность мезозоя – формирование мощных толщ писчего мела.

Нефть и газ образуют крупные месторождения в Зап. Сибири, Саудовской Аравии, Кувейте, Иране, Ливии и др.

Кайнозойский этап – на фоне разнообразия сформировавшихся месторождений следует выделить:

коры выветривания Fe, Mn, Ni, Co и бокситов;

осадочные руды Fe и Mn (Керченское, Чиатурское и др.);

1/3 мировых запасов нефти (Кувейт, Кавказ, Туркмения, Иран, Ирак, Саудовская Аравия, Каспий);

четвертичные россыпи Au, Pt, Sn, алмазов и др.

С альпийской складчатостью связаны своеобразные золотосеребряные месторождения.


1. Реферат Перспективы становления ноосферной цивилизации
2. Курсовая на тему Фармакогкостический анализ видов маклеи
3. Реферат на тему Steppen Wolf Essay Research Paper Let
4. Контрольная работа Льготы по рабочему времени и целевые отпуска работникам
5. Реферат на тему Sherwood Anderson
6. Отчет по практике на тему Структура і діяльність Ощадбанку
7. Задача Порядок исчисления и уплаты акцизного сбора
8. Реферат Географические особенности Черного моря
9. Реферат Катастрофа рейса 800 авиакомпании Trans World Airlines
10. Статья Популяции. Дрейф генов