Реферат на тему Корреляционно регрессионный анализ в системе маркетинговых исследований
Работа добавлена на сайт bukvasha.net: 2014-12-21Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Министерство Образования
Республики Беларусь
Женский Институт ЭНВИЛА
Реферат
по курсу «Маркетинговые исследования»
на тему «Корреляционно-регрессионный анализ в системе маркетинговых исследований»
Минск 2007
ПЛАН
1. Общие положения
2. Корреляция (понятия, методика, экономический смысл)
3. Регрессия (понятия, методика, экономический смысл)
Корреляция и регрессия – это методы входящие в группу экономико-математических методов, используемых при проведении маркетинговых исследований. Они используются для установления взаимосвязей между группами переменных, описывающих маркетинговую деятельность.
Но действие корреляции и регрессии затруднено в связи с:
- сложностью объекта изучения, нелинейностью маркетинговых процессов, временными лагами;
- сложностью измерения маркетинговых переменных. Трудно измерить реакцию потребителей на определенные стимулы, например рекламу;
- неустойчивостью маркетинговых взаимосвязей, обусловленной изменениями вкусов, привычек, оценок и др.
В условиях глубоких и быстрых изменений внешней среды математическая модель не в состоянии предсказать влияние изменения, которое изначально не было в ней учтено. Математическая модель не способна к импровизации и не может приспособиться к изменениям внешней среды.
Расчет корреляций и расчет регрессий - это два последовательных этапа одного и того же анализа данных, который в маркетинге принято называть корреляционно-регрессионным анализом. Они выполняются в аналитическом режиме, который предназначен, в первую очередь, для обеспечения последовательного режима правильной постановкой задачи и наиболее подходящей выборкой из имеющихся данных. Исследователь, применяющий корреляционно-регрессионный анализ, отбирает наиболее адекватные и представительные территории, периоды времени, объекты исследования, виды факторов и т.д. Аналитический режим имеет заданный "вход" - исходную постановку задачи и выборку из данных - и "выход" - фильтрованную постановку задачи и выборку. В остальном он не ограничивает методику анализа.
1.Корреляция используется для качественного анализа: отбора (скрининга) взаимосвязанных факторов, и выделения той части выборки, на которой теснота связи максимальна. Затем для отобранных факторов и подвыборки проводится количественный анализ: строятся регрессионные функции взаимосвязи. Они могут использоваться в информационном конвейере. Информационный конвейер - образует последовательность программных блоков: качество - аналог - количество - риск - цена - спрос. Каждый блок рассчитывает соответствующую группу характеристик на основе информации, получаемой с предыдущего этапа расчета или из баз данных. Результат передается следующему блоку, или же тот подключается напрямую к базе данных.
Область применимости полученных регрессионных функций устанавливается с помощью кластерного анализа или с применением генетических алгоритмов определения области экстраполяции.
Кластерный анализ - разбиение выборки на группы (кластеры). Кластеры должны быть компактными, иначе говоря, расстояние между разными кластерами должно быть больше, чем среднее расстояние между точками внутри одного и того же кластера.
Генетические алгоритмы осуществляют поиск оптимума сразу несколькими вариантами комбинаций параметров. Процесс поиска включает три основных этапа, повторяемых в цикле:
-эволюция - сдвиг варианта в направлении ожидаемого оптимума с использованием, вообще говоря, как производных критерия по параметрам, так и стохастических "скачков";
-отсеивание "неудачливых" вариантов;
-скрещивание "удачливых" вариантов: порождение вариантов - "потомков", сочетающих удачные значения параметров "родителей".
Название "генетические алгоритмы" связано с тем, что они воспроизводят современные представления о естественном отборе: скрещивание генотипов - определение удачности порожденных фенотипов - отсев неудачников из набора партнеров для следующего скрещивания.
В качестве коррелируемых факторов выбираются данные в координатных интервалах одного или двух блоков. Для каждой пары факторов рассчитывается обычный коэффициент корреляции. При этом суммирование производится по переменным развертки. Переменная развертки - переменная, играющая роль оси, вдоль которой развертываются данные, например, абсцисса на графике. Одновременно играет роль генератора статистики: в ней производится суммирование данных при вычислении статистических показателей: коэффициента корреляции, коэффициентов регрессии и др. Обычно это пространство и/или время. Таким образом, корреляция отражает пространственно-временную синхронность между, скажем, повышением конкурентоспособности и качества продукции и повышением спроса на него.
Если маркетолога интересует связь между двумя метрическими переменными, то используется парная корреляция. Данная корреляция характеризуется коэффициентом корреляции Пирсона. Частный коэффициент корреляции – мера зависимости между двумя переменными после корректировки эффектов переменных. Коэффициент корреляции изменяется от -1 до +1. Абсолютная величина коэффициента характеризует тесноту связи, а знак указывает на ее направление.
Парная корреляция отвечает на такие вопросы, как, например:
- Насколько сильно связан спрос с расходами на рекламу?
- Связано ли восприятие качества товаров потребителями с их восприятием цены?
Частная же корреляция – на:
- Если брать зависимость спроса от затрат на рекламу, то существует ли влияние ценового фактора.
- А при изучении влияния качества и цены, существует ли эффект торговой марки.
Частная корреляция может быть полезна для выявления ложных связей.
Ни с одним из этих видов корреляции не возникает проблем, если данные измерены с помощью интервальной или относительной шкал. Но есть и неметрические переменные, которые нельзя измерить с помощью интервальной или относительной шкалы и они не подчиняются закону нормального распределения. В этих случаях используются коэффициенты Спирмена и ранговая корреляция Кендала, а сама корреляция называется неметрической. Различие этих коэффициентов в том, что коэффициент ранговой корреляции Кендала используется, когда большая часть наблюдений попадает в относительно немногочисленные категории, а коэффициент ранговой корреляции Спирмена наоборот, – когда существует множество категорий.
Пример использования корреляционного анализа на практике:
Маркетологи, занимающиеся изучением отношения потребителей к торговым маркам, обнаружили, что для таких товаров, которые продаются с минимальным участием продавцов, отношение покупателя к рекламе служит промежуточным звеном между распознаванием брэнда и отношением к нему. Они сделали попытку узнать, что будет с этой промежуточной переменной, если товары покупаются через компьютерную сеть. Одна из компаний в Венгрии исследовала воздействие на покупки непосредственно рекламы. Маркетологи провели опрос, в ходе которого измерялись различные показатели. После этого необходимо было вычислить частный коэффициент корреляции между отношением к брэнду и доверием к нему с одновременным исключением влияния отношения к рекламе. Данный корреляционный анализ показал, что отношение к рекламе действительно высокозначимое и влияет на покупки потребителей, т.к. частный коэффициент корреляции был значительно меньше, чем парный коэффициент между доверием к брэнду и отношением к нему.
2. Регрессионный анализ – это метод установления формы и изучения связей между метрической зависимой переменной и одной или несколькими независимыми переменными.
Регрессионный анализ используют в тех случаях, когда:
- необходимо установить, реально ли есть взаимосвязь между переменными;
- необходимо установит тесноту связи зависимых и независимых переменных;
- нужно определить форму связи;
- нужно предсказать значение зависимой переменной;
- необходимо осуществлять контроль над независимыми переменными при определении вкладов конкретной переменной.
Для проведения регрессионного анализа необходимо следующее:
-Выбор одного блока, из которого берется координатный интервал, чьи данные дают зависимую переменную регрессии.
-Выбор одного или нескольких блоков, из которых аналогично берутся факторы в качестве независимых переменных регрессии. При этом необходимо, чтобы блок, дающий зависимую переменную, и все блоки, дающие независимые переменные, имели какие-либо общие координаты (обычно пространство и время), которые служат переменными развертки и дают точки, по которым проводится регрессионная кривая или поверхность.
-Выбор типа и "степени" функций от независимых переменных, которые включаются в регрессию.
-Задание координатных интервалов переменных сравнения, внутри которых регрессионная функция не должна значимо изменяться.
-Определяется точность предсказания. Для этого находится стандартная ошибка оценки регрессии.
Регрессия проводится последовательно с увеличением числа независимых переменных и степени регрессионной функции. При этом общесистемным оптимизатором находится минимум среднеквадратичного отклонения точек данных от регрессионной кривой.
Для регрессионной кривой вычисляются характеристики неопределенности - показатели тесноты регрессии: кривые доверительного интервала и коэффициент детерминации. Последний может вычисляться сразу для всех комбинаций "зависимая переменная - независимая переменная".
Как и корреляция, регрессия рассчитывается для фиксированных координатных интервалов каждой переменной сравнения. Проверяется устойчивость регрессии к смене координатного интервала на том же уровне иерархии.
Так же как и корреляционный анализ, регрессионный имеет свои особенности и направленности.
Для установления математической зависимости между двумя метрическими переменными – зависимой и независимой используется парная регрессия. Множественная регрессия используется для определения математической зависимости между двумя или больше независимыми переменными и зависимой переменной, выраженной с помощью интервальной или относительной шкал. Силу тесноты связи в данном случае измеряют с помощью коэффициента множественной детерминации (аналогично, как и при корреляции). При пошаговой регрессии независимые переменные вводят и выводят из уравнения регрессии один за другим, чтобы выбрать меньшее их количество, которое объясняет большую часть вариации.
Парная регрессия отвечает на такие вопросы как:
- Какова зависимость между зависимыми переменными и независимыми?
- Зависит ли вариация объемов рынка от численности торгового персонала?
Множественная регрессия дает ответы на вопросы:
- Объясняется ли спрос на продукт с точки зрения цен, количества конкурентов и посредников на рынке?
- Зависит ли доля рынка от расходов на PR-акции, рекламу и бюджета на промоакции?
- Зависит ли спрос от проведения бенчмаркинга, ценовой политики конкурентов и т.д.
Пример регрессионного анализа:
Ошеломительным примером такого анализа является пример компании Sun Microsystems, которая обошла по продажам компанию IBM. Взяв за основу регрессионный анализ конкурентных преимуществ, компания стала лидером на рынке технологий. Регрессионный анализ проводился следующим образом: было взято три набора независимых переменных: численность специалистов в компании конкурента, расходы на рекламу и расходы на разработки. И все они использовались только благодаря проведенному ранее бенмаркингу. Зависимой переменной являлся объем сбыта. Проведение данного анализа показало, что именно из-за численности персонала страдала компания Sun Microsystems и была в лидерах IBM. Из-за большей численности персонала в компании Sun Microsystems возникала разобщенность на профессиональном уровне, и зачастую не было единого мнения по внедрению того или иного продукта, деньги на разработки выделялись, но большинство из разработок так и оставались разработками и не внедрялись. Напротив, в IBM менее крупной по численности компании разработки быстро уходили на рынок и скупались практически сразу. По итогам анализа, Sun Microsystems не решилась сокращать персонал, боясь утечки информации, а разделилась на филиалы и тем самым увеличила свои продажи, и 3 года находилась на пике в лидерах.
Источники:
1. Голубков Е. П. Маркетинговые исследования: теория, методология и практика: Учебник. – 3-е изд., перераб. и доп. – М.: Издательство «Финпресс», 2003. – 496 с.
2. Малхотра, Нэреш К. Маркетинговые исследования. Практическое руководство, 4-е изд.: Пер. с англ. – М.: ООО «И.Д. Вильямс», 2007. – 1200 с.
3. http://www.iki.rssi.ru/ehips/dict1.htm#5
4. http://www.student.km.ru
Республики Беларусь
Женский Институт ЭНВИЛА
Реферат
по курсу «Маркетинговые исследования»
на тему «Корреляционно-регрессионный анализ в системе маркетинговых исследований»
Минск 2007
ПЛАН
1. Общие положения
2. Корреляция (понятия, методика, экономический смысл)
3. Регрессия (понятия, методика, экономический смысл)
Корреляция и регрессия – это методы входящие в группу экономико-математических методов, используемых при проведении маркетинговых исследований. Они используются для установления взаимосвязей между группами переменных, описывающих маркетинговую деятельность.
Но действие корреляции и регрессии затруднено в связи с:
- сложностью объекта изучения, нелинейностью маркетинговых процессов, временными лагами;
- сложностью измерения маркетинговых переменных. Трудно измерить реакцию потребителей на определенные стимулы, например рекламу;
- неустойчивостью маркетинговых взаимосвязей, обусловленной изменениями вкусов, привычек, оценок и др.
В условиях глубоких и быстрых изменений внешней среды математическая модель не в состоянии предсказать влияние изменения, которое изначально не было в ней учтено. Математическая модель не способна к импровизации и не может приспособиться к изменениям внешней среды.
Расчет корреляций и расчет регрессий - это два последовательных этапа одного и того же анализа данных, который в маркетинге принято называть корреляционно-регрессионным анализом. Они выполняются в аналитическом режиме, который предназначен, в первую очередь, для обеспечения последовательного режима правильной постановкой задачи и наиболее подходящей выборкой из имеющихся данных. Исследователь, применяющий корреляционно-регрессионный анализ, отбирает наиболее адекватные и представительные территории, периоды времени, объекты исследования, виды факторов и т.д. Аналитический режим имеет заданный "вход" - исходную постановку задачи и выборку из данных - и "выход" - фильтрованную постановку задачи и выборку. В остальном он не ограничивает методику анализа.
1.Корреляция используется для качественного анализа: отбора (скрининга) взаимосвязанных факторов, и выделения той части выборки, на которой теснота связи максимальна. Затем для отобранных факторов и подвыборки проводится количественный анализ: строятся регрессионные функции взаимосвязи. Они могут использоваться в информационном конвейере. Информационный конвейер - образует последовательность программных блоков: качество - аналог - количество - риск - цена - спрос. Каждый блок рассчитывает соответствующую группу характеристик на основе информации, получаемой с предыдущего этапа расчета или из баз данных. Результат передается следующему блоку, или же тот подключается напрямую к базе данных.
Область применимости полученных регрессионных функций устанавливается с помощью кластерного анализа или с применением генетических алгоритмов определения области экстраполяции.
Кластерный анализ - разбиение выборки на группы (кластеры). Кластеры должны быть компактными, иначе говоря, расстояние между разными кластерами должно быть больше, чем среднее расстояние между точками внутри одного и того же кластера.
Генетические алгоритмы осуществляют поиск оптимума сразу несколькими вариантами комбинаций параметров. Процесс поиска включает три основных этапа, повторяемых в цикле:
-эволюция - сдвиг варианта в направлении ожидаемого оптимума с использованием, вообще говоря, как производных критерия по параметрам, так и стохастических "скачков";
-отсеивание "неудачливых" вариантов;
-скрещивание "удачливых" вариантов: порождение вариантов - "потомков", сочетающих удачные значения параметров "родителей".
Название "генетические алгоритмы" связано с тем, что они воспроизводят современные представления о естественном отборе: скрещивание генотипов - определение удачности порожденных фенотипов - отсев неудачников из набора партнеров для следующего скрещивания.
В качестве коррелируемых факторов выбираются данные в координатных интервалах одного или двух блоков. Для каждой пары факторов рассчитывается обычный коэффициент корреляции. При этом суммирование производится по переменным развертки. Переменная развертки - переменная, играющая роль оси, вдоль которой развертываются данные, например, абсцисса на графике. Одновременно играет роль генератора статистики: в ней производится суммирование данных при вычислении статистических показателей: коэффициента корреляции, коэффициентов регрессии и др. Обычно это пространство и/или время. Таким образом, корреляция отражает пространственно-временную синхронность между, скажем, повышением конкурентоспособности и качества продукции и повышением спроса на него.
Если маркетолога интересует связь между двумя метрическими переменными, то используется парная корреляция. Данная корреляция характеризуется коэффициентом корреляции Пирсона. Частный коэффициент корреляции – мера зависимости между двумя переменными после корректировки эффектов переменных. Коэффициент корреляции изменяется от -1 до +1. Абсолютная величина коэффициента характеризует тесноту связи, а знак указывает на ее направление.
Парная корреляция отвечает на такие вопросы, как, например:
- Насколько сильно связан спрос с расходами на рекламу?
- Связано ли восприятие качества товаров потребителями с их восприятием цены?
Частная же корреляция – на:
- Если брать зависимость спроса от затрат на рекламу, то существует ли влияние ценового фактора.
- А при изучении влияния качества и цены, существует ли эффект торговой марки.
Частная корреляция может быть полезна для выявления ложных связей.
Ни с одним из этих видов корреляции не возникает проблем, если данные измерены с помощью интервальной или относительной шкал. Но есть и неметрические переменные, которые нельзя измерить с помощью интервальной или относительной шкалы и они не подчиняются закону нормального распределения. В этих случаях используются коэффициенты Спирмена и ранговая корреляция Кендала, а сама корреляция называется неметрической. Различие этих коэффициентов в том, что коэффициент ранговой корреляции Кендала используется, когда большая часть наблюдений попадает в относительно немногочисленные категории, а коэффициент ранговой корреляции Спирмена наоборот, – когда существует множество категорий.
Пример использования корреляционного анализа на практике:
Маркетологи, занимающиеся изучением отношения потребителей к торговым маркам, обнаружили, что для таких товаров, которые продаются с минимальным участием продавцов, отношение покупателя к рекламе служит промежуточным звеном между распознаванием брэнда и отношением к нему. Они сделали попытку узнать, что будет с этой промежуточной переменной, если товары покупаются через компьютерную сеть. Одна из компаний в Венгрии исследовала воздействие на покупки непосредственно рекламы. Маркетологи провели опрос, в ходе которого измерялись различные показатели. После этого необходимо было вычислить частный коэффициент корреляции между отношением к брэнду и доверием к нему с одновременным исключением влияния отношения к рекламе. Данный корреляционный анализ показал, что отношение к рекламе действительно высокозначимое и влияет на покупки потребителей, т.к. частный коэффициент корреляции был значительно меньше, чем парный коэффициент между доверием к брэнду и отношением к нему.
2. Регрессионный анализ – это метод установления формы и изучения связей между метрической зависимой переменной и одной или несколькими независимыми переменными.
Регрессионный анализ используют в тех случаях, когда:
- необходимо установить, реально ли есть взаимосвязь между переменными;
- необходимо установит тесноту связи зависимых и независимых переменных;
- нужно определить форму связи;
- нужно предсказать значение зависимой переменной;
- необходимо осуществлять контроль над независимыми переменными при определении вкладов конкретной переменной.
Для проведения регрессионного анализа необходимо следующее:
-Выбор одного блока, из которого берется координатный интервал, чьи данные дают зависимую переменную регрессии.
-Выбор одного или нескольких блоков, из которых аналогично берутся факторы в качестве независимых переменных регрессии. При этом необходимо, чтобы блок, дающий зависимую переменную, и все блоки, дающие независимые переменные, имели какие-либо общие координаты (обычно пространство и время), которые служат переменными развертки и дают точки, по которым проводится регрессионная кривая или поверхность.
-Выбор типа и "степени" функций от независимых переменных, которые включаются в регрессию.
-Задание координатных интервалов переменных сравнения, внутри которых регрессионная функция не должна значимо изменяться.
-Определяется точность предсказания. Для этого находится стандартная ошибка оценки регрессии.
Регрессия проводится последовательно с увеличением числа независимых переменных и степени регрессионной функции. При этом общесистемным оптимизатором находится минимум среднеквадратичного отклонения точек данных от регрессионной кривой.
Для регрессионной кривой вычисляются характеристики неопределенности - показатели тесноты регрессии: кривые доверительного интервала и коэффициент детерминации. Последний может вычисляться сразу для всех комбинаций "зависимая переменная - независимая переменная".
Как и корреляция, регрессия рассчитывается для фиксированных координатных интервалов каждой переменной сравнения. Проверяется устойчивость регрессии к смене координатного интервала на том же уровне иерархии.
Так же как и корреляционный анализ, регрессионный имеет свои особенности и направленности.
Для установления математической зависимости между двумя метрическими переменными – зависимой и независимой используется парная регрессия. Множественная регрессия используется для определения математической зависимости между двумя или больше независимыми переменными и зависимой переменной, выраженной с помощью интервальной или относительной шкал. Силу тесноты связи в данном случае измеряют с помощью коэффициента множественной детерминации (аналогично, как и при корреляции). При пошаговой регрессии независимые переменные вводят и выводят из уравнения регрессии один за другим, чтобы выбрать меньшее их количество, которое объясняет большую часть вариации.
Парная регрессия отвечает на такие вопросы как:
- Какова зависимость между зависимыми переменными и независимыми?
- Зависит ли вариация объемов рынка от численности торгового персонала?
Множественная регрессия дает ответы на вопросы:
- Объясняется ли спрос на продукт с точки зрения цен, количества конкурентов и посредников на рынке?
- Зависит ли доля рынка от расходов на PR-акции, рекламу и бюджета на промоакции?
- Зависит ли спрос от проведения бенчмаркинга, ценовой политики конкурентов и т.д.
Пример регрессионного анализа:
Ошеломительным примером такого анализа является пример компании Sun Microsystems, которая обошла по продажам компанию IBM. Взяв за основу регрессионный анализ конкурентных преимуществ, компания стала лидером на рынке технологий. Регрессионный анализ проводился следующим образом: было взято три набора независимых переменных: численность специалистов в компании конкурента, расходы на рекламу и расходы на разработки. И все они использовались только благодаря проведенному ранее бенмаркингу. Зависимой переменной являлся объем сбыта. Проведение данного анализа показало, что именно из-за численности персонала страдала компания Sun Microsystems и была в лидерах IBM. Из-за большей численности персонала в компании Sun Microsystems возникала разобщенность на профессиональном уровне, и зачастую не было единого мнения по внедрению того или иного продукта, деньги на разработки выделялись, но большинство из разработок так и оставались разработками и не внедрялись. Напротив, в IBM менее крупной по численности компании разработки быстро уходили на рынок и скупались практически сразу. По итогам анализа, Sun Microsystems не решилась сокращать персонал, боясь утечки информации, а разделилась на филиалы и тем самым увеличила свои продажи, и 3 года находилась на пике в лидерах.
Источники:
1. Голубков Е. П. Маркетинговые исследования: теория, методология и практика: Учебник. – 3-е изд., перераб. и доп. – М.: Издательство «Финпресс», 2003. – 496 с.
2. Малхотра, Нэреш К. Маркетинговые исследования. Практическое руководство, 4-е изд.: Пер. с англ. – М.: ООО «И.Д. Вильямс», 2007. – 1200 с.
3. http://www.iki.rssi.ru/ehips/dict1.htm#5
4. http://www.student.km.ru