Реферат

Реферат на тему Соединения деталей и узлов машин

Работа добавлена на сайт bukvasha.net: 2014-12-22

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


РЕФЕРАТ
На тему: «Соединения деталей и узлов машин»
Проверил:
_________________ Иванов  Л. П.
<<_____>>________________2008 г.
Выполнил: Кузнецов Н.П.
<<_____>>________________2008 г.
Оренбург 2008

Содержание
1 Общие сведения о соединениях........................................................ 3
2 Клеммовые соединения..................................................................... 3
3 Клеевые соединения.......................................................................... 4
4 Заклепочные соединения................................................................... 5
5 Конические соединения..................................................................... 10
6 Клиновые соединения....................................................................... 12
7 Профильные соединения................................................................... 14
8 Сварные соединения......................................................................... 15
9 Паяные соединения........................................................................... 19
10 Шлицевые соединения..................................................................... 21
11 Штифтовые соединения................................................................... 25
12 Шпоночные соединения.................................................................. 27
13 Резьба............................................................................................... 29
14 Соединения с натягом..................................................................... 34
Список использованной литературы.................................................. 43

1. Общие сведения о соединениях
Общей тенденцией развития соединений является приближение их к целым деталям и удовлетворение условию равнопрочности с соединенными элементами. Иначе мате­риал соединяемых элементов не будет пол­ностью использован.
Соединения по признаку возможности разборки делят на неразъемные, ко­торые нельзя разобрать без разрушения или повреждения (заклепочные, сварные), и разъемные, позволяющие повторные сборку и разборку (резьбовые, клиновые, шлицевые и др.).
Неразъемные соединения осуществля­ются силами молекулярно-механического сцепления (сварные, паяные, клеевые) или механическими средствами (клепаные, со­единения с натягом, вальцованные).
Соединения элементов сосудов и трубо­проводов, содержащих жидкости или газы, должны удовлетворять условиям плотно­сти (герметичности). Для этого контакти­рующие поверхности механических соеди­нений должны быть сжаты давлением, существенно превышающим давление среды.

2. Клеммовые соединения
Клеммовыми называют фрикционные соединения деталей с соосными цилиндрическими посадочными поверхностями, в которых требуемое радиальное давление (натяг) и фиксация за счет сил трения создаются путем деформации изгиба ох­ватывающей детали затянутыми болтами (в соответстивии с  рисунком 1).
9,17
Рисунок 1 – Клеммовые соединения
Эти соединения применяют для пере­дачи вращающего момента и осевой силы между валами, осями и призма­тическими деталями (рычагами, щеками сборных коленчатых валов, частями уста­новочных колец и т. п.).
При проектировании соединения обычно требуется определить силу затяжки, обес­печивающую взаимную фиксацию деталей и передачу требуемого вращающего мо­мента, а также оценить прочность болта (болтов) и охватывающей детали (клем­мы).
В приближенном расчете можно принять, что контактные напряжения от затяжки равномерно распределены по по­верхности контакта (как в соединении с натягом). Тогда средние контактные на­пряжения  qв связаны со сдвигающей нагрузкой Q соотношением
   
Если соединение имеет п болтов (в од­ном или двух рядах, см. рис. 5, б), затянутых силой Fо, то условие равновесия клеммы (рис. 5, в) имеет вид пFо=qld.
Учитывая равенство и последнее соотношение, получим

Диаметр резьбы болта для обеспечения такой силы затяжки

где [σP] – допускаемое напряжение для материалов болта.
         Оценку прочности клеммы можно выполнить путем расчета методом конечных элементов или по теории колец.

3. Клеевые соединения
Клеевые соединения - это соединения неметаллическим веществом посредством поверхностного схватывания (адгезии) и внутренней межмолекулярной связи (ко­гезии) в клеящем слое.
Достоинствами этих соединений являют­ся: возможность соединения деталей из разнородных материалов, соединения тон­ких листов, пониженная концентрация на­пряжений и хорошее сопротивление уста­лости, возможность обеспечения герметич­ности, уменьшенная масса, возможность получения гладкой поверхности изделия.
Применяемые в машиностроении клеи подразделяют на термореактивные - эпо­ксидные, полиэфирные, фенолоформаль­дегидные, полиуретановые; термоплас­тичные на основе полиэтилена, поливенил­хлорида; эластомеры на основе каучуков. При нормальной температуре 18?20 °С предел прочности на сдвиг большинства клеев 10?20 МПа (предельные достигае­мые значения 30?50 МПа); при 200?250 °С снижается на 30?50 %.
Клеи на основе кремнийорганических соединений и неорганических полимеров (в частности, ВК2) обладают теплостой­костью до 700?1000 °С, но меньшей проч­ностью и повышенной хрупкостью.
Наряду с жидкими клеями применяют клеи в виде пленок, которые вкладывают между соединяемыми деталями, а потом нагревают и сжимают.
Основным недостатком клеевых соедине­ний является их слабая работа на неравно­мерный отрыв, что накладывает требова­ния на конструкцию соединений. Наиболее широко применяют соединения внахлестку, работающие на сдвиг. Стыковые соедине­ния для обеспечения прочности выполняют по косому срезу (на «ус») или предусмат­ривают накладки. При увеличении толщи­ны клеевого слоя прочность падает. Опти­мальная толщина слоя 0,05?0,15 мм.
Успешно применяют клей для повыше­ния прочности сопряжения зубчатых колес с валами и зубчатых венцов со ступицами. Клей начинают использо­вать при установке наружных колец под­шипников качения в корпус, для уплотне­ния и стопорения резьбовых соединений, для присоединения пластинок режущего инструмента.
Для особопрочных соединений, испы­тывающих произвольную нагрузку, вклю­чая неравномерный отрыв, и вибрацион­ную нагрузку, применяют комбинирован­ные соединения, клеесварные и клеезакле­почные, клеерезьбовые.
Комбинированные соединения обеспе­чивают равнопрочность с целыми листа­ми и широко применяются в ответствен­ных машинах (в частности, в тяжелых самолетах соединяемые поверхности по несколько сот квадратных метров).
Клеесварные соединения выполняют обычно в виде сочетания клеевых и то­чечных сварных швов. Толстые листы соединяют двухрядными швами с шахмат­ным расположением точек. Точечную сварку преимущественно производят по жидкому (эпоксидному) клею.
Клеезаклепочные соединения еще прочнее клеесварных. Их обычно выпол­няют по незатвержденному (фенольному БФ-1, БФ-2 и др.) клею, что исключает необходимость сдавливания соединяемых листов при склеивании.
Успешно применяют клееболтовые со­единения.
Рассеяние энергии в клеевых соедине­ниях на 20?30 % больше, чем в обычных фрикционных.

4. Заклепочные соединения
Заклепка (в соответстивии с рисунком 2) представляет со­бой стержень круглого сечения с головка­ми на концах, одну из которых, называе­мую закладной, выполняют на заготовке заранее, а вторую, называемую замыкаю­щей, формируют при клепке. Заклепки стягивают соединяемые детали, в результате чего часть или вся внешняя продольная нагруз­ка на соединения передается силами тре­ния на поверхности стыка.
5,1
Рисунок 2 – Заклёпка с полукруглыми головками и простейшее заклёпочное соединение
Заклепочные соединения разделяют на: 1) силовые (иначе называемые прочны­ми соединениями), используемые преиму­щественно в металлических конструкциях машин, в строительных сооружениях;
2) силовые плотные (иначе называемые плотнопрочными соединениями), исполь­зуемые в котлах и трубах, работающих под давлением.
Плотность также можно обеспечить с помощью клея.
Преимуществами заклепочных соедине­ний являются стабильность и контролируе­мость качества. Недостатки - повышен­ный расход металла и высокая стоимость, неудобные конструктивные формы в связи с необходимостью наложения одного листа на другой или применения специальных накладок. В настоящее время заклепочные соединения в большинстве областей вытес­нены сварными и этот процесс продол­жается.
Область практического применения за­клепочных соединений ограничивается сле­дующими случаями:
1) соединения, в которых нагрев при сварке недопустим из-за опасности отпуска термообработанных деталей или коробле­ния окончательно обработанных точных деталей;
2) соединения несвариваемых материа­лов;
3) соединения в самолетах, например в пассажирском самолете применяют до 2,5 миллионов заклепок;
         4) соединения в автомобилестроении для рам грузовых машин.        Заклепки изготовляют из прутков на вы­садочных автоматах.
Клепку стальными заклепками диамет­ром до 8?10 мм, а также заклепками из латуни, меди и легких сплавов всех диа­метров производят холодным способом, а остальных заклепок - горячим спосо­бом.
Материал заклепок должен быть доста­точно пластичным для обеспечения воз­можности формирования головок и одно­родным с материалом соединяемых дета­лей во избежание электрохимической коррозии. Стальные заклепки обычно изго­товляют из сталей Ст2, Ст3, 09Г2 и др.
Государственными стандартами пред­усмотрены следующие виды заклепок.
Заклепки со сплошным стерж­нем: с полукруглой головкой (ГОСТ 10299-80* и ГОСТ 14797-85, рисунок 3, а), имеющие основное применение в силовых и плотных швах; с плоской головкой (ГОСТ 14801-85, в соответстивии с рисунком 3, б), предна­значенные для работы в коррозионных средах; с потайной головкой (ГОСТ10300-80*, ГОСТ 14798-85, в соответстивии с рисунком 3, в), применяемые при недопустимости высту­пающих частей, в частности в самоле­тах; с полупотайной головкой для соеди­нения тонких листов.
Заклепки полупустотелые (ГОСТ 12641-80*, ГОСТ 12643-80, г, д, е) и пустотелые (ГОСТ 12638-80* - ГОСТ 12640-80*, в соответстивии с рисунком 3, ж, з, и) применяют для соединения тонких листов и неметаллических деталей, не допускающих больших нагрузок.
5,2
Рисунок 3 – Стандартные стальные заклёпки
Для увеличения ресурса заклепочных соединений создают радиальный натяг, ре­сурс при этом увеличивается в 2?4 раза.
Для крепления лопаток некоторых паро­вых и газовых турбин применяют заклепки, устанавливаемые под развертку и рабо­тающие в основном на сдвиг.
Наиболее отработаны конструкции, ти­паж и технология заклепочных соединений в авиационной промышленности.
Кроме традиционных заклепок приме­няют:
   1) заклепки из стержней с одно­временным расклепыванием обеих головок и образованием гаран­тированного натяга по цилиндрической по­верхности;
2) заклепки с потайной головкой и компенсатором - местной выпук­лостью на головке, деформируемой приклепке и уплотняющей контакт головки;
3) заклепки для швов с односто­ронним подходом  и с сердечни­ком, который при осевом пере­мещении распирает заклепку, образуя замыкающую головку, а потом обрывается и фрезеруется для обеспечения гладкой поверхности;
5,3
Рисунок 4 – Стержневые заклёпки для односторонней клёпки
4) взрывная заклепка того же на­значения, у которой замыкающая головка образуется в результате взрыва вещества, заложенного в отверстие заклепки; взрыв вызывается нагревом закладной головки и стержня;
5) болт-заклепка в виде стержня, устанавливаемого с натягом, и высокой шайбы; при установке болта гайку обжимают на стержне, имеющем в этом месте кольцевые канавки; потом хвос­товую часть стержня обрывают;
6) заклепка с большим сопро­тивлением сдвигу в виде твердой пустотелой заклепки с потайной головкой, притягиваемой винтом.
                   Заклепочные соединения по конструкции разделяют на соединения внахлестку (в соответстивии с  рисунком 5, а), соединения с одной накладкой (в соответстивии с  рисунком 5, б) и соединения с двумя наклад­ками (в соответстивии с  рисунком 5, в).
5,5
Рисунок 5 – Основные типы заклёпочных соединений
Заклепочные соединения применяют так­же для деталей машин общего назначения, например для крепления венцов зубчатых колес к ступицам, лопаток в турбинах, противовесов коленчатых валов, тормоз­ных лент и обкладок, для соединения дета­лей рам и колес автомобилей и т. д.
При конструировании рекомендуется придерживаться следующих правил:
1) в элементах, работающих на растя­жение или сжатие для уменьшения их из­гиба, заклепки следует располагать воз­можно ближе к оси, проходящей через центр массы сечений, или симметрично от­носительно этой оси;
2) в каждом соединении для устранения возможности относительного поворота со­единяемых деталей желательно использо­вать не менее двух заклепок;
3) заклепки по возможности следует размещать таким образом, чтобы соеди­няемые элементы ослаблялись меньше и их материал использовался более полно, т. е. следует предпочитать шахматное располо­жение рядному.
Расчет заклепочных соединений. В со­ответствии с обычными условиями работы заклепочных соединений основными на­грузками для них являются продольные силы, стремящиеся сдвинуть соединяемые детали одну относительно другой. В плотном и точном соединениях необхо­димо, чтобы вся внешняя нагрузка во из­бежание местных сдвигов воспринималась силами трения.
Расчет заклепок в соединении, находя­щемся под действием продольной нагруз­ки, сводится по форме к расчету их на срез. Трение в стыке учитывают при выборе допускаемых напряжений среза. При цен­тральном действии нагрузки предполага­ется равномерное распределение сил между заклепками.
В заклепочном соединении допустимая нагрузка, отнесенная к одной заклепке,
 
где d - диаметр стержня заклепки; [τ]ср - условное допускаемое напряжение за­клепки на срез; i - число срезов.
При центрально действующей нагрузке F необходимое число заклепок z=F/F1.
Заклепки на смятие в односрезном или двухсрезном силовом соединении проверяют по формуле

где s - толщина стенки соединяемых де­талей.
Проверка на смятие плотных соединений не нужна, так как в них вся продольная нагрузка воспринимается силами трения в стыке.
Соединяемые элементы проверяют на прочность в сечениях, ослабленных заклеп­ками:

Допускаемое напряжение для соедине­ний стальных деталей заклепками из ста­лей Ст2 и Ст3 при расчете по основным нагрузкам: на срез заклепок [τ]ср=140 МПа и на смятие [σ]см=280?320 МПа, на растяжение соединяемых элементов из стали Ст3 [σ]р=160 МПа.
При холодной клепке допускаемые на­пряжения в заклепках снижают на 30 %.
Для элементов соединений с пробитыми и нерассверленными отверстиями допус­каемые напряжения снижают на 30 %.
Если соединение работает при редких знакопеременных нагрузках, допускаемые напряжения понижают умножением на коэффициент
    
где Fmin и Fmax - наименьшая и наиболь­шая по абсолютной величине силы, взятые со своими знаками. Для соединения эле­ментов из низкоуглеродистых сталей а=1, b=0,3, а для соединений из среднеуглеро­дистых сталей а = 1,2, b= 0,8.
Потребная площадь элементов, рабо­тающих на растяжение под действием силы F,

где φ=(P-d)/P коэффициент прочности шва, величина которого обычно колеблется в пределах от 0,6 до 0,85; Р - шаг распо­ложения заклепок.
 При проектном расчете значением φ за­даются, а потом производят проверочный расчет.
 В групповых заклепочных соединениях, подверженных сложному напряженному состоянию, силы на одну заклепку опре­деляются, как в резьбовых соединениях.

5. Конические соединения
Конические соединения представляют собой разновидность фрик­ционных соединений, используемых для пе­редачи вращающего момента между дета­лями с соосными посадочными поверхностями. Обычно такие соединения применяют для закрепления деталей на кон­цах валов.
Натяг и контактные напряжения в конических соединениях (в отличие от цилин­дрических соединений) создаются затяж­кой.
Уравнение равновесия при равномерном распределении по длине контактных напря­жений q и касательных напряжений τf от трения (сцепления) имеет вид

где r1 и r2 - соответственно минималь­ный и максимальный радиусы конического участка вала в сопряжении.
Если учесть, что dz=dr·ctgα. то после интегрирования и несложных преобразо­ваний получим
     
где F0 - сила затяжки соединения; dm и l - средний диаметр и длина соединения; α - угол наклона образующей конуса к оси вала; f - коэффициент трения пары вал - ступица.
Из соотношения видно, что с увеличением угла α (конусности) необ­ходимо увеличивать затяжку соединения для сохранения уровня контактных на­пряжений.
Обычно из технологических соображе­ний применяют небольшую конусность. По ГОСТ 21081-75 конусность

что соответствует α≈2°52' (d1 и d2 - минимальный и максимальный диаметры вала в соединении). При большей конусности на несущую способность соединений существенное влияние оказывают погрешности углов конуса вала и ступицы (втулки), т. е. в конических соединениях отношение f/tgα<1. При малом угле α можно при­нять, что диаметр вала ddm.
Вращающий момент, передаваемый сое­динением.
                              
Откуда требуемая минимальная сила затяжки соединения

где k=1,3?1,5 - коэффициент запаса сцепления;. fпр - приведенный коэффициент трения,

Из формулы следует, что на пере­даваемый вращающий момент влияют сила предварительной затяжки, средний диаметр и состояние поверхностей кон­такта.
Максимальная сила затяжки устанав­ливается из условий прочности (подобно максимальному расчетному натягу). Так как конусность невелика, то максималь­ная сила затяжки (tgα=0,5K=0,05)

где             D – наружный диаметр ступицы (втулки).
Затяжку соединений контролируют ди­намометрическим ключом или по осе­вому перемещению ступицы.
В процессе работы возможно ослабле­ние затяжки из-за обмятия поверхностей контакта (особенно в соединении со шпон­кой).
Для фиксации осевого положения иног­да используют бурты на валах.

6. Клиновые соединения
Клиновым называют разъемное соединение, затягиваемое или регулируемое с помощью клина. Типичным примером клинового соеди­нения является соединение стержня со втулкой. Со­единение обычно затягивают, забивая клин или перемещая его посредством винта.
7,35
Рисунок 6 – Клиновые соединения стержня со втулкой
Достоинства клинового соединения: 1) бы­строта сборки и разборки; 2) возмжность создания больших сил затяжки и возможность восприятия больших нагрузок; 3) относитель­ная простота конструкции.
По назначению клиновые соединения раз­деляют на: 1) силовые, предназначенные для прочного скрепления деталей; 2) установочные, предназначенные для установки и регулирова­ния требуемого взаимного положения деталей.
Силовые соединения применяют для постоян­ного скрепления при редких разборках в маши­нах и при частой сборке и разборке в приспособ­лениях для обработки деталей на станках и в сборных литейных моделях.
Большинство силовых клиновых соединений выполняют с предварительным натягом: клином создается внутренняя сила, действующая и при отсутствии внешней нагрузки. Установочные клиновые соединения обычно выполняют без предварительного натяга с силовым замыкани­ем, преимущественно нагрузкой от сил тяжести.
В клиновых соединениях применяют почти исключительно односкосные клинья. Рабочие по­верхности клиньев выполняют цилиндрически­ми или плоскими с фасками. В крепежных клиновых соединениях уклоны выбирают из условия самоторможения равными 1:100, 1:50, в часто затягиваемых и установоч­ных клиньях - 1:20, 1: 10, 1:4.
7,37
Рисунок 7 – Расчётные схемы клинового соединения
Примерные соотношения размеров клиньев в соединении стержня диаметром d со втулкой:
толщина клина (из условия равнопрочности стержня на растяжение и на смятие клином) b=(0,25?0,3)d; высота сечения клина h≥2,5b.
При забивании и выбивании клина (в соответстивии с  рисунком 7), а суммарные силы на рабочих гранях кли­на наклонены к нормалям на угол трения φ в сто­рону, обратную перемещению клина. Обозначим силу забивания клина через F, а силу, развиваемую на стержне,- через Q. В устано­вочных клиновых соединениях она равна полез­ной внешней нагрузке Q=Qвн. В соединениях с предварительным натягом по условию, что после приложения внешней нагрузки в соедине­нии сохраняется натяг, расчетная сила в стер­жне Q=(1,25?1,5)Qвн. Согласно условию равновесия клина в направлении его оси мож­но записать F=Q[tg(α+φ)+tgφ].
Сила выбивания клина

Самоторможение определяется условием, что сила F1 больше или равна нулю. Полагая в пре­дыдущем уравнении F1≥0, получаем
, отсюда α≤2φ.
Таким образом, угол односкосного клина или сумма углов сторон (угол заострения) дву­скосного клина должны быть меньше двойного угла трения на рабочих гранях.
Расчетный коэффициент трения обычно принимают равным 0,1; тогда φ≈5°45'. Однако при пластичном смазочном материале и чистых поверхностях коэффициент трения может сни­жаться до 0,04. Наоборот, при сухих обезжи­ренных поверхностях коэффициент трения возрастает до 0,2?0,3 и более. В крепежных клиновых соединениях обеспечивается значи­тельный запас самоторможения. При уклонах, меньших 1:25, и постоянной нагрузке нет не­обходимости в специальных стопорных уст­ройствах, предохраняющих соединения от самопроизвольного ослабления. В остальных случаях клинья специально закрепляют.
При расчёте клина предпологают, что давление по поверхности контакта распределяется равномерно (рисунок 7, б). В действительности распределение давления особенно при больших нагрузках более благоприятно для прочности клина на изгиб (рисунок 7, в).
Дополнительно проверяют поверхность кон­такта клина и втулки на смятие, хвостовую часть стержня на срез, а также прочность втул­ки как толстостенной трубы, подверженной внутреннему давлению.

7. Профильные соединения
Профильными назы­вают соединения, в которых ступица (втул­ка) насаживается на фасонную поверх­ность вала и таким образом обеспечи­вается жесткое фиксирование деталей в ок­ружном направлении и передача враще­ния. В качестве примера показано соединение на квадрате со скруг­ленными углами (для снижения концент­рации напряжений); применяются также соединения эллиптического и треугольного сечений.
9,29
Рисунок 8 – Профильное соединение
По сравнению со шпоночными и шлице­выми эти соединения имеют небольшую концентрацию напряжений и более высо­кую точность центрирования. Однако сложность изготовления профильной по­верхности ограничивает области примене­ния соединений.
      Расчет соединений. Профильные соеди­нения рассчитывают на смятие. Условие прочности по допускаемым напряжениям для соединения имеет обычный вид:

где l - длина соединения, обычно l=(1?2)d; b - ширина прямолинейной части грани; [σсм]­ допускаемое напряжение смятия, для термообработанных поверхностей [σсм]=100?140 МПа.

8. Сварные соединения
Сварные соединения - это не­разъемные соединения, основанные на ис­пользовании сил молекулярного сцепления и получаемые путем местного нагрева де­талей до расплавленного состояния (свар­ка плавлением электродуговая, электро­шлаковая и др.) или до тестообразного со­стояния, но с применением механической силы (контактная сварка).
Дуговая сварка металлическим электродом осуществляется электрической дугой между электродом и изделием. Выделяе­мое тепло оплавляет соединяемые детали и расплавляет электрод (или присадочный материал), который дает дополнительный металл для формирования шва. Дуговая электрическая сварка является крупным русским изобретением (Н. И. Бенардос, 1882 г., и Н. Г. Славянов, 1888 г.).
Основным способом механизированной дуговой сварки, обеспечивающим ысокое качество шва, производительность и экономичность процесса, является автоматическая сварка под слоем флюса. Особенно эффективно применение автоматической сварки в серийном производстве и для конструкций с длинными швами. Для конструкций с коротки­ми разбросанными швами применяют полу­автоматическую шланговую свар­ку, а при малом объеме сварочных работ­ ручную дуговую сварку.
Для сварки металлических деталей малой толщины, деталей из высоколегированных ста­лей, цветных металлов и сплавов получили рас­пространение дуговая сварка в среде защитных газов, сварка в углекислом газе и аргонодуговая сварка.
Электрошлаковая сварка так же, как и дуговая, представляет собой сварку плав­лением; при прохождении тока через шлаковую ванну от электрода к изделию выделяется теп­лота, расплавляющая основной и присадочный материалы. Электрошлаковая сварка предназ­начена для соединения деталей толщиной от30 мм до 1?2 м. Электрошлаковая сварка поз­воляет заменять сложные тяжелые цельноли­тые и цельнокованые конструкции сварными из поковок, отливок или листов, позволяет фор­мировать переходные поверхности (галтели), что значительно облегчает и удешевляет произ­водство. Электрошлаковую сварку применяют, в частности, для чугунных отливок.
Контактная сварка основана     на разогреве стыка теплотой, выделяющейся при пропускании через него электрического тока, и сдавливании деталей. Контактную сварку при­меняют преимущественно в серийном и массо­вом производствах.
При сварке трением используется теп­лота, выделяемая в процессе относительного движения свариваемых деталей, преимущест­венно тел вращения.
Применяют также специальные виды сварки:
1) диффузионную, позволяющую соединять разнородные материалы и обеспечивающую ми­нимальное изменение свойств соединения по сравнению со свойствами основных материалов;
2) электронно-лучевую (весьма экономически выгодную) и лазерную, обеспечивающие узкую зону проплавления, малые деформации и поз­воляющие сварку закаленных деталей;
3) радиочастотную, преимущественно приме­няемую для тонких труб и весьма производи­тельную;
4) ультразвуковую в приборостроении для де­талей малой толщины из однородных и разно­родных металлов;
5) сварку взрывом, преимущественно для по­крытий.
Существенные перспективы, в частности для повышения
производительности сварки и резки, дает применение плазменного процесса.
Весьма эффективны наплавки, повышаю­щие износостойкость в 3?10 раз. Возможна наплавка слоя практически любого металла или сплава на заготовку из обычной конструкцион­ной стали.
Широко применяют восстановительные на­плавки, но еще недостаточно применяют наплав­ки, выполняемые в процессе изготовления, хотя они наиболее выгодны. Успешно наплавляют клапаны автомобильных двигателей и дизелей, лемехи, бандажи железнодорожных колес, про­катные валки.
Разработана сварка пластмасс газовыми теплоносителями, нагревательными элементами ТВЧ., ультразвуком, трением, с помощью хими­ческих реакций.
Сварные соединения по взаимному рас­положению соединяемых элементов можно разделить на следующие группы:
1) Соединения стыковые. Соединяемые элементы являются продолжением один другого, сварку производят по торцам.
2) Соединения нахлесточные. Боковые поверхности соединяемых элементов час­тично перекрывают одна другую.
3) Соединения тавровые. Соединяемые элементы перпендикулярны или реже на­клонны один к другому. Один элемент торцом приваривается к боковой поверх­ности другого.
4) Соединения угловые. Соединяемые элементы перпендикулярны или наклонны один к другому и привариваются по кром­кам.
Применение стыковых соединений, как наиболее близких к целым деталям, рас­ширяется, а применение нахлесточных­ сокращается.
Применение сварных конструкций обес­печивает существенную экономию металла по сравнению с клепаными и литыми. Экономия металла по сравнению с клепаными конструкциями получается в основном ввиду:
а) полного использования рабочих сече­ний соединяемых элементов без ослабле­ния их отверстиями для заклепок;
б) возможности непосредственного со­единения элементов без вспомогательных деталей (накладок).
   Общая экономия металла составляет в среднем 15?20 %.
Экономия металла по сравнению с ли­тыми конструкциями достигается благо­даря:
 а) более высоким механическим свойст­вам материалов и меньшим остаточным напряжениям;
б) более тонким стенкам;
в) меньшим припускам на механиче­скую обработку.
 Сварные стальные конструкции легче чу­гунных литых на величины до 50%, а стальных литых - до 30 %.
Для сварки характерны высокие эконо­мические показатели: малая трудоемкость процесса, относительно низкая стоимость оборудования, возможность автоматиза­ции и т. д. Относительно низкая стоимость сварочного оборудования определяется тем, что оно не связано с использованием больших сил (как кузнечно-прессовое обо­рудование) и с необходимостью плавления большого количества металла (как литей­ное производство).
Недостатком сварки является неста­бильность качества шва, зависящая от квалификации сварщика. Этот недостаток в значительной степени устраняется приме­нением автоматической сварки.
Сварка является основным видом полу­чения соединений металлических строи­тельных конструкций. Наиболее прогрес­сивно изготовление металлических конст­рукций на заводах сваркой, а их соедине­ние на строительных объектах высоко­прочными болтами.
Сварка позволяет удешевлять и совер­шенствовать конструкции деталей, полу­ченных разными заготовительными опера­циями, поковок, проката, отливок и дета­лей из разных материалов.
Широкое применение находят сварные конструкции из гнутых или штампованных элементов. Эти конструкции допускают ра­циональные формы при малой трудоем­кости.
Общим исходным условием проектиро­вания сварных соединений является ус­ловие равно прочности шва и соединяемых элементов.
Расчет сварных конструкций. Прочность сварных соедине­ний при переменной нагрузке.
Сварные соединения, равнопрочные при статических нагрузках соединяемым эле­ментам, при переменных нагрузках оказы­ваются относительно слабее.
Это объясняется: 1) концентрацией напряжений (связанной с геометрией стыка, сварочными дефектами, а для фланго­вых и косых угловых швов – совместной работой с соединяемыми элементами); 2) остаточными напряжениями; в) литей­ной структурой шва, изменением струк­туры металла около шва и выгоранием легирующих компонентов.
Наибольшим сопротивлением перемен­ным нагрузкам обладают стыковые соеди­нения, особенно при снятых механической обработкой утолщениях.
Прочность сварных соединений при действии переменных нагрузок сильно за­висит от качества швов. Например, при наличии в стыковых швах даже незна­чительного непровара прочность снижает­ся на 50 %. Такое же снижение получается от сварки электродами с тонкими покры­тиями.
Большое значение имеет конструкция швов. Например, прочность при перемен­ных нагрузках тавровых соединений со скосами кромок в связи с меньшей кон­центрацией напряжений в 1,5 раза выше, чем без разделки кромок. От постановки накладок для усиления стыковых соедине­ний прочность при переменных нагрузках, как правило, не только не увеличивается, но, наоборот, уменьшается в связи с появ­лением источников резкой концентрации напряжений.
Следует избегать совмещения сварных швов с местами концентрации напряжений от формы. Следует обеспечивать равно­мерную толщину швов, в частности исклю­чать большие скопления наплавленного металла в местах пересечения швов. Следует так располагать швы, чтобы было удобно их сваривать и контроли­ровать.
Кардинальным средством повышения прочности сварных соединений при пере­менных нагрузках является наклеп дробью и чеканка.
В опытах на сварных лабораторных образцах дробеструйной обработкой уда­валось повысить прочность более чем в 1,5 раза и даже довести прочность до прочности целых образцов; прочность соединений электрошлаковой сваркой уда­валось повысить в 2 раза.
Выбор допускаемых напряже­ний. Допускаемые напряжения в сварных швах при статической нагрузке задаются в долях от допускаемого напряжения ос­новного металла соединяемых элементов на растяжение в зависимости от способа сварки.
Допускаемые напряжения основного ме­талла в металлических строительных и крановых конструкциях (в соответствии со «Строительными нормами и правилами» ) определяют по зависимости

где R - расчетное сопротивление разру­шению (R=0,9σТ для низкоуглеродистой и R=0,85σТ для низколегированной ста­ли); m - коэффициент условий работы, в большинстве случаев равный 0,9; при повышенной податливости элементов и в некоторых других случаях т=0,8; kH­ - коэффициент надежности, обычно kH=1?1,2, для подкрановых балок при тяжелом режиме kH=1,3?1,5.
Обычно = σТ/(1,35?1,6) для углеродистых и = σТ/(1,5?1,7) для легированных сталей.
В строительных конструкциях при пе­ременных нагрузках расчетные сопротив­ления или допускаемое напряжение умно­жают на коэффициент γ=с/(а-br), если наибольшее напряжение растягивающее, или на коэффициент γ=с/(а-br), если наибольшее напряжение сжимающее, где r=σminmax характеристика цикла, а, b, с - коэффициенты.
Расчет на сопротивление усталости машиностроительных свар­ных конструкций можно прово­дить по основному металлу вблизи шва, если обеспечена статическая равнопроч­ность со швами.
Расчет на надежность сварных соединений. На основании отечественных и зарубежных исследований, содержащих диапазон рас­сеяния предела выносливости сварных соединений: стыковое соединение, сварка автоматическая и полуавтомати­ческая 0,03; то же, сварка ручная 0,05; нахлесточное соединение 0,06; сварные двутавровые балки 0,05; сварные короб­чатые балки 0,09.
Окалина может служить са­мостоятельным источником вариации пре­дела выносливости с коэффициентом 0,06. Эти коэффициенты должны квадратически суммироваться с коэффициентом вариации для деталей одной плавки без сварного шва и коэффициентом по плавкам.

9. Паяные соединения
Паяные соединения - это неразъемные соединения, обеспечиваемые силами моле­кулярного взаимодействия между соеди­няемыми деталями иприпоем. Припой­ - это сплав или металл, вводимый в расплав­ленном состоянии в зазор между соединяе­мыми деталями и имеющий более низкую температуру плавления, чем соединяемые детали. Отличие пайки от сварки - отсут­ствие расплавления или высокотемпера­турного нагрева соединяемых деталей.
Связь в паяном шве основана на:
растворении металла деталей в расплав­ленном припое;
взаимной диффузии элементов припоя  и металла соединяемых деталей;
  бездиффузионной атомной связи.
Прочность паяного шва существенно выше, чем припоя, в связи с растворением в слое материала деталей и в связи с тем, что слой находится в стесненном напря­женном состоянии между соединяемыми деталями.
Пайкой соединяют однородные и разно­родные материалы: черные и цветные ме­таллы, сплавы, керамику, стекло и т. д.
Основные паяные соединения: внахлест­ку (ПН-l?ПН-6, включая телескопиче­ские ПН-4?ПН-6), встык (ПВ-l, ПВ-2), вскос (ПВ-3, ПВ-4), втавр (ПТ-1?ПТ-4), соприкасающиеся (ПС-l, ПС-2). Преиму­щественное применение имеют соединения внахлестку, как обеспечивающие достаточ­но высокую прочность вплоть до достиже­ния равнопрочности с целыми деталями.
Стыковые соединения имеют примене­ние, ограниченное малыми нагрузками, что связано с малыми поверхностями спая.
Соединения ступенчатые и вскос (ПВ-3, ПВ-4 с углом не более 30°) способны обес­печивать необходимую прочность, но их применение ограничивается сложностью изготовления.
Пайкой соединяют листы, стержни, тру­бы между собой и с плоскими деталямии др. Важную область составляют сотовые паяные конструкции (рисунок 9).
5,8
Рисунок 9 – Сотовые конструкции
Припои должны быть легкоплавкими, хорошо смачивать соединяемые поверх­ности, обладать достаточно высокой проч­ностью, пластичностью, непроницае­мостью. В технике применяют широкую номенклатуру припоев, разделяемую на группы по температуре плавления и по химическому составу.
В машиностроении употребительны следую­щие припои.
оловянно-свинцовые по ГОСТ 21930-76* ­ПОС 61, ПОС 40, ПОС 30, ПОС 10 и др.
оловянно-свинцовые сурьмянистые и мало­сурьмянистые по ГОСТ 21930-76* (автомоби­лестроение, соединения цинковых и оцинкован­ных деталей и др.);
серебряные, оловянные, оловянно-свинцовые с содержанием серебра до 10 % по ГОСТ 19738-74* (ответственные соединения, требую­шие высокой прочности, коррозионной стой­кости, относительно невысокой температуры плавления, повышенной электропроводности);
медно-цинковые сплавы - латуни (для боль­шинства металлических деталей, кроме деталей, подвергаемых ударным и вибрационным нагруз­кам).
В процессе пайки для защиты поверхностей от загрязнения и окисления и соответственно для улучшения растекания жидкого припоя при­меняют флюсы.
При низкотемпературной пайке применяют в виде флюса канифоль и ее растворы, вазелин, а также более активные флюсы, содержащие органические кислоты (олеиновую, молочную, лимонную) и др.
Для повышения активности флюса добавляют фтористые и хлористые соли металлов.
Применяют многообразные способы пайки: паяльником с периодическим подогревом или с непрерывным подогревом газом, жидким топли­вом или электрическим подогревом; газопла­менными горелками; электронагревом (преиму­щественно электросопротивлением); в жидких средах; в печах; специальные.
Наиболее проста пайка паяльником, наибо­лее производительны пайки в жидких средах и в печах.
Расчет паяных соединений проводят по номинальному напряжению в зависимости от предела прочности. Значения предела прочности на срез при пайке наиболее распространенными оловянно-свинцовыми припоями:
Материал детали
Сталь 20
Сталь Х18Н9Т
Медь М3
Латунь Л62
τср, МПа
28
32
27
22
Предел прочности спая на растяжение (по опытам с серебряными припоями ПСр40 и ПСр45) для большинства сталей на 30-40 % выше τср, а для особо высоко­легированных сталей выше до 2 и более раз.

10. Шлицевые соединения
Шлицевые соединения (в соответстивии с  рисунком 10) условно можно рассматривать как многошпоночное, у которого шпонки выполнены как одно целое с валом. Шпоночные и зубчатые соединения служат для закрепления деталей на осях и валах. Такими деталями являются шкивы, зубчатые колеса, муфты, маховики, кулачки и т. д.
9,22   
Рисунок 10 – Детали (а) и шлицевое соединение (б): 1- вал; 2 – втулка (ступица)
Соединения обеспе­чивают жесткое фиксирование деталей в окружном направлении и допускают их взаимные осевые перемещения (подвиж­ные соединения).
По форме поперечного, сечения разли­чают три типа соединений: прямобочные ГОСТ 1139-80; эвольвентные ГОСТ6033-80; треугольные (изготовляются по отраслевым стандартам).
Соединения с прямобочными зубьями распространены в машино­строении. В зависимости от числа зубьев (z=6?20) и их высоты ГОСТ 1139-80 предусматривает три серии соединений для валов с внешним диаметром от 14 до 125 мм.
9,24
Рисунок 11 – Шлицевые соединения с эвольвентными (а) и треугольными (б) зубьями
При переходе от легкой к тяжелой серии при неизменном внутреннем диа­метре зубьев увеличиваются их число, внешний диаметр и, как следствие, на­грузочная способность.
Центрирование, т. е. соосное положение соединяемых деталей, осуществляют: по внешнему (в соответстивии с  рисунком 11, а) или внутреннему (в соответстивии с  рисунком 11, б) диаметру зубьев, а также по боковым поверхностям зубьев.
Для первых двух типов центрирования соединения имеют минимальные зазоры по поверхностям диаметров D и d соответ­ственно и ограниченный зазор по боковым сторонам. По нецентрирующему диаметру предусмотрен значительный зазор. При третьем типе центрирования  минимальный зазор устанавливают по боковым сторонам зубьев и значительные зазоры по поверх­ностям диаметров D и d. Стандартом предусмотрены три формы исполнения зубьев вала и одна­ для впадин втулки.
Центрирование по внешнему диаметру зубьев технологически наиболее простое и экономичное, так как центрирующие поверхности допускают точную и произ­водительную обработку. Такое центрирование применяют в основном для неподвижных соединений.
Рекомендуемые посадки по ширине b при центрировании по наружному диаметру: F8/f7, F8/f8, F8/js7 и др.
Центрирующие по­верхности вала шлифуют, обеспечивая наиболее высокую точность центрирова­ния. Такое центрирование используют обычно в подвижных соединениях: Реко­мендуют следующие посадки по центри­рующему диаметру d: H7/f7, H7/g6, Н7/ js7 и др.
Центрирование по боковым сторонам зубьев применяют сравнительно редко, лишь в соединениях, подверженных ревер­сивным динамическим нагрузкам. Оно не обеспечивает соосности вала и ступицы, хотя имеет высокую нагрузочную спо­собность. Рекомендуемые посадки по ширине b: F8/js7, D9/e8. D9/f8 и др.
Соединения с эвольвентными шлицами более технологичны, чем прямобочные шлицевые соединения. Для обработки валов с эвольвентными шлицами требуется мень­ший комплект более простого инструмента и используется совершенная технология зубообработки.
Соединения имеют более высокую точ­ность и прочность благодаря большей пло­щади контакта, большему числу зубьев и скруглению впадин, снижающему кон­центрацию напряжений. В cвязи с этим области применения соединений непрерыв­но расширяются. Их центрирование выпол­няют обычно по боковым поверхностям зубьев. Рекомендуемые посадки: 7H/7h, 7Н/9r, 7Н/8р - для неподвижных соединений и 9H/9f, 9H/9g, 11H/l0d - для подвиж­ных соединений.
В отличие от зубчатых колес угол про­филя (α=30°) увеличен, а высота зуба уменьшена (h=m).
По ГОСТ 603З-80 размерный ряд охва­тывает эвольвентные шлицевые соедине­ния с модулями m=0,5?10 мм, наруж­ными диаметрами D =4?500 мм и чис­лами зубьев z=6?82.
При использовании прямобочных и эвольвентных соединений для направления осевого перемещения деталей, посаженных на вал (например, зубчатых колес в короб­ках передач), твердость поверхности зубьев повышают до 54-60 HRC для уменьшения изно­са.
Соединения с треугольными зубьями применяют преимущественно для неподвижных соединений при тонкостенных втулках, а также в сое­динениях стальных валов со ступицами из легких сплавов, в приборостроении. Они позволяют координировать положение ва­ла и втулки в пределах малых углов. По рекомендации СЭВ (РС 656-66) угол профиля β=60° при номинальных диа­метрах до 60 мм. Кроме таких соеди­нений, в машиностроении по отраслевым стандартам изготовляют соединения с дру­гими углами профиля (72°, 90° и др.) и D=5?75 мм.
В быстроходных передачах авиацион­ные и автомобильные коробки передачи т. п. точность центрирования шлицевых соединений часто недостаточна. Для ее по­вышения центрирование осуществляют по вспомогательным поверхностям (коническим, цилиндрическим, а иногда отказываются от применения соединений и колеса изготовляют как одно целое с валом.
9,25
Рисунок 12 – Центрирования деталей шлицевого соединения по конической и цилиндрической дополнительным поверхностям
Проектирование и расчет соединений. Основные размеры  шлицевого соединения задают при конструировании вала. Длину соеди­нения принимают не более 1,5D; при большей длине существенно возрастает нерав­номерность распределения нагрузки вдоль зубьев и трудоемкость изготовления. Учитывая, что соединения в машинах выходят из строя преимущественно из-за повреждения рабочих поверхностей зубьев и усталостного разруше­ния шлицевых валов, после проектирова­ния выполняют проверочный расчет зубьев.
9,26
Рисунок 13 – Расчётная схема зуба шлицевого соединения
Условие прочности по допускаемым на­пряжениям смятия имеет вид

где dm - средний диаметр соединения; z - ­число зубьев; h и l - соответственно высо­та и длина поверхности контакта зубьев; ψ - коэффициент, учитывающий нерав­номерное распределение нагрузки между зубьями и вдоль зубьев (ψ=0,5?0,7); [σсм] - допускаемое напряжение смятия на боковых поверхностях.
Для соединения с эвольвентными зубья­ми принимают: [σсм] =0,2σв ­для неподвижных соединений с химико­-термической обработкой зубьев;
см] =0,lσв - то же для подвижных сое­динений. Для соединений с зубьями без химико-термической обработки зна­чения [σсм] снижают вдвое. Высота и длина поверхности контакта: для прямобочных зубьев
;    ;
для эвольвентных зубьев h=m; dm=mz, где m – модуль зубьев.
Шлицевым соединениям присуща высо­кая концентрация нагрузки, обусловленная погрешностями изготовле­ния, смещениями осей деталей под нагруз­кой, закручиванием деталей. Лишь в идеально точном соединении при дейст­вии вращающего момента Т нагрузка между зубьями распределена равномерно
; где I – номер зуба.
При совместном действии момента и радиальной силы F, нагрузка между зубьями будет распределяться неравно­мерно
   и  
В реальных соединениях имеются погрешности в угловом шаге зубьев вала и втулки, а также радиальные зазоры, ко­торые приводят к существенно неравно­мерному распределению нагрузки в ок­ружном направлении и циклическому взаимному смещению деталей в осевом направлении, изнашиванию зубьев и раз­витию контактной коррозии.
В приближенном расчете концентрацию нагрузки учитывают общим коэффициен­том ψ. Для улучшения распределения нагрузки и повышения долговечности соединений повышают точность изготовления, совершенствуют формы деталей и выполняют ряд других мероприя­тий.  
         11 Штифтовые соединения
                   Штифтовые соединения применяют при небольших нагрузках преимущественно в приборостроении. Соединяемые детали сопрягаются при этом по переходным посадкам.

Рисунок 14 – Штифтовые соединения
Для исключения выпадения в процессе работы используют штифты: с насеченными канавками, вальцованные, резьбовые. Часто для этих же целей произ­водят разведение концов штифтов.
9,31
Рисунок 15 – Штифты (а – гладкие, б – с канавками, в – с резьбовым концом, г – разводной конический)
Основные типы штифтов стандартизо­ваны. Их изготовляют из углеродистых сталей 30, 45, 50 и др.
По характеру работы штифтовое соеди­нение подобно заклепочному (работает на срез и смятие). Для расчета соединения используют те же зависимости. Условие прочности при срезе радиального штифта,

а условие прочности по смятию

где Ft - срезающая сила (осевая или окружная); i - число поверхностей среза; Ас=πd2/ 4 - площадь штифта при срезе; Асм=d(D-d1) - площадь поверхности смятия (сжатия); [τc]=70?80 МПа­ - допускаемое напряжение при срезе; [σсм] =200?300 МПа - допускаемое напряжение при смятии.
Срезающая сила при передаче вра­щающего момента Ft=2T/d1.
Штифты диаметром d=(0,1?0,15)dв и длиной l=(3?4)dв (dв - диаметр вала) устанавливают по посадке с натягом Н7/r6 в отверстия, совместно просверленные и развернутые при сборке в валу и ступице по стыку посадочных поверхностей.
9,32
Рисунок 16 – Схемы к расчёту соединений радиальным (а) и осевым (б) штифтами
Многоштифтовые соединения этого типа по прочности близки к шлицевым.

12. Шпоночные соединения
Соединения двух со­осных цилиндрических деталей для передачи вращения между ними осуществляется с помощью шпонки 1 (в соответстивии с  рисунком 17, а), специальной детали, за­кладываемой в пазы соединяемых вала 2 и ступицы 3.
9,20
Рисунок 17 – Шпоночные соединения
В машиностроении применяют не­напряженные (без нагрузки) соеди­нения (с помощью призматических и сег­ментных шпонок (в соответстивии с  рисунком 17, б и в), и напряженные соединения (с помощью клиновых шпонок (в соответстивии с  рисунком 17, г)). Шпонки этих типов стандартизованы, их размеры выбирают по ГОСТ 23360-78, ГОСТ 24071-80 и ГОСТ 24068-80.
Основные достоинства соединений со­стоят в простоте конструкции и возмож­ности жесткой фиксации насаживаемой детали в окружном направлении.
Однако соединения трудоемки в изго­товлении, требуют ручной пригонки или подбора. Это ограничивает использование соединений в машинах крупносерийного и массового производства. Не рекомендуется применение соединений для быстровра­щающихся валов ответственного назначе­ния из-за сложности обеспечения концент­ричной посадки сопрягаемых деталей.
Шпоночные соединения применяют преимущественно в тех случаях, когда посадку с натягом не удается реализовать по условиям прочности или технологическим возможностям.
Соединения призматическими шпонка­ми. Применяются в конструкциях наиболее широко, так как просты в изготовлении и имеют сравнительно небольшую глубину врезания в вал.
Шпонки имеют прямоугольное сечение с отношением высоты к ширине от 1 (для валов диаметром до 22 мм) до 0,5 (для валов больших диа­метров). Их устанавливают с натягом в пазы валов. Рабочими у шпонок являют­ся боковые узкие грани. В радиальном направлении предусмотрен зазор, В ответ­ственных соединениях сопряжение дна па­за с боковыми сторонами выполняют по радиусу для снижения концентрации напряжений. Материал шпонок - чистотянутая сталь 45 или сталь Ст6 с пределом прочности σв =590?750 МПа.
Если принять для упрощения, что напря­жения в зоне контакта распределены рав­номерно, и плечо рав­нодействующей этих напряжений равно 0,5d (где d - диаметр вала), то средние контактные напряжения (напряжения смя­тия, вызывающие смятие рабочих граней)
 
где Т - вращающий момент; lр - рабочая длина шпонки; t2=0,4h - ­глубина врезания шпонки в ступицу;  - допускаемое напряжение на смя­тие.
На практике сечение шпонки подбирают по ГОСТ 23360-78 в зависимости от диа­метра вала, а длину l шпонки назначают на 5-10 мм меньше длины ступицы. Затем по формуле (1) оценивают прочность соединения на смятие или вычисляют пре­дельный момент, соответствующий напря­жению .
Рабочая длина шпонки lp=l-b может быть определена из очевидного соотношения.
.
Проверку прочности шпонок на срез обычно не производят, так как это условие удовлетворяется при использовании стан­дартных сечений шпонок и рекомендуемых значений .
Если условие прочности не выпол­няется, то соединение образуют с помощью двух шпонок, установленных под углом 120 или 180°.
Соединения характеризуются сущест­венно неравномерным распределением нагрузки и напряжений как по высоте сечения, так и по длине шпонки. Это вызывает упругопласти­ческое смятие рабочих граней пазов и шпонки, закручивание ее, особенно при на­личии зазора между валом и ступицей. Поэтому длину шпоночных соединений ог­раничивают (l≤1,5d), а посадку зубча­тых колес, шкивов, полумуфт и других деталей на валы осуществляют с натягом (посадки Н7/р6; Н7/r6; H7/s7; H7/k6 и т. п.).
В этом случае шпоночные соединения по существу выключаются из работы и оказы­ваются резервными, а шпонки обеспечи­вают лишь жесткую фиксацию в окружном направлении насаживаемых деталей.
Соединения сегментными шпонками. Сегментные шпонки имеют более глубокую посадку и не пере­кашиваются под нагрузкой, они не требуют ручной пригонки. Однако глубокий паз су­щественно ослабляет вал, поэтому сег­ментные шпонки используют преимущест­венно для закрепления деталей на мало­нагруженных участках вала (например, на входных или выходных хвостовиках валов).
Расчет соединений с сегментными шпон­ками также производят по формуле, принимая t2=h-t1. До­пускаемые напряжения смятия  при постоянной нагрузке в соединении сталь­ного вала и шпонки из чистотянутой стали (σв=500?600 МПа) в зависимости от материала ступицы можно выбирать следующими: 150-180 МПа - для ступиц из стали; 80-100 МПа - из чугуна и алю­миния; 15-25 МПа - из текстолита и древопластика.
Большие значения принимают при лег­ком режиме работы (переменная нагрузка не больше 5% от постоянной), а мень­шие - при тяжелых условиях эксплуатации (нагрузка знакопеременная с ударами).

13. Резьба
Резьба - выступы, образованные на основной поверхности винтов или гаек и расположенные по винтовой линии. Резьбовое соединение образуется двумя (реже тремя) деталями. У одной из них на наружной, а у другой на внутренней поверхности имеются расположенные по винтовой поверхности выступы – соответственно наружная и внутренняя резьба (в соответстивии с  рисунком 18).
По форме основной поверхности различают цилиндрические и конические резьбы. Наиболее распространена цилиндрическая резьба. Коническую резьбу применяют для плотных соединений труб, масленок, пробок и т. п.
Профиль резьбы — контур сечения резьбы в плоскости, проходящей через ось основной поверхности. По форме профиля различают треугольные, прямоугольные, тра­пецеидальные, круглые и другие резьбы.
По направлению винтовой линии различают правую и левую резьбы. У правой резьбы винтовая линия идет слева направо и вверх, у левой — справа налево и вверх. Наиболее рас­пространена правая резьба. Левую резьбу применяют только в специальных случаях.
Если витки резьбы расположены по двум или нескольким параллельным вин­товым линиям, то они образуют многозаходную резьбу. По числу захода раз­личают однозаходную, двухзаходную и т. д. резьбы. Наиболее распространена однозаходная резьба. Все крепежные ре­зьбы однозаходные. Многозаходные резь­бы применяются преимущественно в винтовых механизмах. Число заходов больше трех применяют редко.
8,1
Рисунок 18 – Резьбовое соединение с метрической резьбой
Методы изготовления резьбы
 1. Нарезкой вручную мет­чиками или плашками. Способ малопроизводительный. Его применяют в индивидуальном производстве и при ремонтных работах.
 2.   Нарезкой на токарно-винторезных или специальных станках.
 3.   Фрезерованием на специальных резьбофрезерных станках. Применяют для нарезки винтов больших диаметров с повышенными требованиями к точности резьбы (ходовые и грузовые винты, резьбы на валах и т.д.).
  4.   Накаткой на специальных резьбонакатных станках-автоматах. Этим высокопроизводительным и дешёвым способом изготовляют большинство резьб стандартных  крепёжных деталей (болты, винты и т.д.). Накатка существенно упрочняет резьбовые детали.
  5.   Литьём на деталях из стекла, пластмассы, металлокерамики и др.
  6. Выдавливанием на тонкостенных давленных и штампованных изделиях из жести, пластмассы и т.д.
Наибольшее распространение в машино­- и приборостроении имеет метрическая резьба по ГОСТ 8724-81 с крупными мелким шагами. Она обозна­чается буквой М и цифрами, показывающими наружный диаметр резь­бы (например, резьба, имеющая d=24 мм, обозначается М24), в обозначении резьбы с мелким шагом, кроме диаметра, в форме сомножителя указывается ее шаг (например, М24?1,5 для резьбы, имеющей d=24 мм и Р=1,5 мм). Области примене­ния других типов резьб ограничены спе­циальными конструкциями.
Крепежные детали и типы соединений. Наибольшее распространение среди резь­бовых деталей получили крепежные болты, винты, шпильки, гайки и вставки. С помощью этих деталей образуют большинство разъемных соединении в конструкциях.
8,3
Рисунок 19 – Основные типы резьбовых соединений
Болт (в соответстивии с  рисунком 19, а) и винт (в соответстивии с  рисунком 19, б) – стержень с головкой и одним резьбовым концом. Шпилька (рисунок 19, в) имеет два резьбовых конца. Вставка (в соответстивии с  рисунком 19, г). Винт с резьбовой втулкой (в соответстивии с  рисунком 19, д).
Выбор типа соединения определяется проч­ностью материала соединяемых деталей, частотой сборки и разборки соединения в эксплуатации, а также особенностями конструкции и технологии изготовления соединяемых деталей.
Соединения болтом применяют только при наличии доступа к гайке и головке болта для скрепления деталей сравнитель­но небольшой толщины (например, при наличии специальных поясков или флан­цев), а также при многократной раз­борке и сборке соединений. В последнем случае (особенно при большой толщине соединяемых деталей) предпочтение отда­ется также соединениям винтом или шпилькой.
Соединения винтом и шпилькой при­меняют для скрепления деталей при нали­чии доступа монтажного инструмента лишь с одной стороны (к гайке). Область применения соединений винтом в силовых конструкциях ограничена, пред­почтение отдается соединениям шпилькой. Шпильки фиксируют (стопорят) в корпусной детали (посадкой на резьбе с натя­гом, завинчиванием на сбег резьбы, с помощью клея и т. д.) для предотвра­щения вывинчивания их при отвинчивании гаек.
Вставки применяют в основном для по­вышения износостойкости резьбы в корпу­сах из материалов с невысокой проч­ностью, а также для повышения прочности соединений.
Резьбовые втулки используют преиму­щественно в корпусах из композиционных материалов.
Для предотвращения повреждения по­верхностей соединяемых деталей при за­винчивании гаек под них подкладывают шайбы.
 Конструктивным разнообразием отли­чаются стержни болтов (винтов). Наряду с обычной (в соответстивии с  рисунком 20), наиболее распростра­ненной формой болта (а) приме­няют другие конструкции. Болт (б) в отличие от предыдущего имеет диаметр стержня несколько больше наруж­ного диаметра резьбы. Такие болты уста­навливают в отверстия корпусов без за­зора. В ряде ответственных соединений для увеличения податливости при меняют полые болты (в). Болты на (г и д) имеют центрирующие пояски под головками, а поясок посередине (д) предназначен для гашения виб­раций стержня.
8,4
Рисунок 20 – Конструктивные формы стержней болтов
Формы головок болтов (в соответстивии с  рисунком 21)  и гаек также разнообразны, выбор их для практического использования опре­деляется преимущественно условиями ра­боты соединений, технологией изготовле­ния крепежных деталей и их сборкой.
8,5
Рисунок 21 – Конструктивные формы головок болтов (винтов)
Для фиксирования деталей на валах, осях и др. применяют установочные винты с резьбой по всей длине стержня и упорным наконечником.
Основ­ные материалы болтов (винтов), шпилек и гаек и их механические характеристики нормированы ГОСТ 1759-82.
Для болтов, винтов и шпилек из угле­родистых и легированных сталей установ­лены 12 классов прочности, а для гаек - семь и соответствующие им рекоменду­емые марки сталей.
Выбор материала определяется условия­ми работы. И технологией изготовления. Стержни болтов в массовом производстве изготовляют из пластичных сталей 10, 15, 15Х, 16ХСН и др. на авто­матах методом холодной высадки, резьбу на болтах накатывают.
Для защиты крепежных деталей из угле­родистых сталей от коррозии на них нано­сят окисные пленки или гальванические покрытия (цинковое, кадмиевое, фосфат­ное, медное и др.). Толщина покрытий выбирается в зависимости от шага резьбы и имеет следующие значения: 3-6 мкм для шага до 0,4 мм, 6-9 мкм – для шага 0,4-0,8 мм и 9-12 мкм для шага свыше 0,8 мм.
Расчет резьбовых соединений. Расчет резьбового соединения включает в себя обычно две связанные между со­бой задачи: оценку прочности соединения и оценку плотности сты­ка.
Прочность соединения определяется, как правило, прочностью болта (шпильки), и для ее оценки необходимо знать напряжения в сечении с наименьшей площадью.
В случае, когда внешняя нагрузка на болт изменяется циклически от 0 до F , амплитуда переменных напряжений в сечении по внутреннему диаметру резьбы
     
и среднее напряжение
   
Практика и экспериментальные исследо­вания показали, что прочность затянутых резьбовых соединений при переменной на­грузке определяется ее амплитудой ; чем меньше , тем больше долговечность и ресурс работы соединений. Поэтому одна из важнейших задач конструктора резьбо­вого соединения - добиться снижения внешней нагрузки на болт (шпильку).
Правило конструирования резьбового соединения: жесткие фланцы ­податливые болты.
Плотность стыка определяется остаточной силой в стыке. Внешняя на­грузка F уменьшает силу на стыке деталей до значения

Если сила на стыке станет равной нулю, то стык раскроется и вся внешняя нагрузка будет восприниматься болтом, что опасно для его прочности.
Для предотвращения раскрытия стыка должно соблюдаться условие Fс>0; тогда минимальная сила затяжки

Обычно назначают

где ν - запас по плотности стыка равен 1,25-2 для постоянных нагрузок; 2,5-4 для переменных нагрузок.
Для герметизации стыков применяют плоские прокладки из резины, картона, алюминия, меди и других мягких мате­риалов, упругие кольца, герметики и т. д. Герметичность стыков и соединений про­веряют течеискателями и другими спосо­бами.
Таким образом, сила предварительной затяжки определяется внешней нагрузкой.
Допустимое напряжение затяжки σ0=F0/A1≤0,8σT где σT - предел текучести материала болта. Обычно назначают σ0 = (0,4?0,7) σT.
Для того чтобы соединения работали в расчетных силовых условиях, необходи­мо контролировать затяжку соединений.

14. Соединения с натягом
Соединение деталей машин с натягом - разностью посадочных размеров - осуществляют за счет их пред­варительной деформации. С помощью натяга соединяют обычно детали с цилиндри­ческими и реже коническими поверхностями контакта.
Соединение деталей с натягом представляет собой сопря­жение, в котором передача нагрузки от одной детали к другой осуществляется за счет сил трения на поверх­ностях контакта, образующихся благодаря силам упругости. Вследствие этого соеди­нение имеет нежесткую фиксацию деталей в осевом и окружном направлениях.
9,1
Рисунок 22 – Соединения с натягом венца червячного колеса с центром (а) и шарикоподшипника с валом (б)
Соединения используют сравнительно часто для посадки на валы и оси зуб­чатых колес, шкивов, звездочек и др.
Два способа соединения:
1) При сборке механическим способом охватывае­мую деталь с помощью пресса устанавливают в охватывающую деталь или наоборот. Этот способ ис­пользуется при сравнительно небольших натягах.
2) Тепловой способ соединения применяет­ся при больших натягах и производится путем нагрева охватывающей детали до температуры 300 °С в масляной ванне или охлаждения в жидком азоте охватываемой детали. Вы­бор способа зависит от соотношения масс и конфигурации деталей.
В настоящее время получают распрост­ранение так называемые термомеханичес­кие соединения элементами с памятью формы. Это свойство присуще сплавам, испытывающим обратимое мартенситное превращение, и характеризуется как спо­собность материала, деформированного в мартенситном состоянии, полностью или частично восстанавливать свою форму в процессе последующего нагрева.
Для конструкционных элементов с па­мятью формы используют никель титановый сплав с температурами мартенсит­ного превращения -80?-150 °С и вос­становления формы -140?-60 °С. Сплав практически полностью восстанавливает заданную деформацию и развивает на­пряжение в условиях противодействия процессу формовосстановления до 200­-400 МПа.
Для предупреждения быстрого нагрева деталь устанавливают монтажными кле­щами, губки которых либо изготовляют из материала с большей теплоемкостью, на­пример, меди, либо имеют хлопчатобумаж­ный вкладыш, впитывающий жидкий азот. Допускается сборка такими клещами в течение 2-3 мин.
Нагрев детали теплотой окружающей среды приводит к восстановлению ее прежних размеров и образованию натяга.
Достоинства соединений с натягом оче­видны: они сравнительно дешевы и просты в выполнении, обеспечивают хорошее цент­рирование сопрягаемых деталей и могут воспринимать значительные статические и динамические нагрузки. Области примене­ния таких соединений непрерывно расши­ряются.
Недостатки соединений: высокая трудо­емкость сборки при больших натягах; сложность разборки и возможность по­вреждения посадочных поверхностей при этом; высокая концентрация напряжений; склонность к контактной коррозии из-за неизбежных осевых микросмешений точек деталей вблизи краев соединения и, как следствие, пониженная прочность соедине­ний при переменных нагрузках; отсутст­вие жесткой фиксации деталей.
 Расчет соединений и подбор посадки.
Ос­новная задача расчета состоит в опреде­лении потребного натяга и соответствую­щей ему посадки по ГОСТ 25347-82 для передачи заданной сдвигающей на­грузки от вращающего момента или осе­вой силы.
Возможны случаи, когда посадка не мо­жет быть реализована в конструкции по условиям прочности (обычно охватываю­щей детали).
Поэтому при проектировании соедине­ний должны быть обеспечены как требо­вания взаимной неподвижности деталей соединения, так и усло­вия прочности деталей.
Условие неподвижности деталей соеди­нения. Выражает собой математически уравнение равновесия: при передаче внеш­ней нагрузки  соединяемые детали должны быть взаимно неподвижны.
9,2
Рисунок 23 – Расчётная схема соединения с натягом
Рассмотрим соединение с натягом дета­лей 1 (в соответствии с рисунком 23) и 2 при действии сдвигаю­щей силы, например, осевой Fа. Взаимное смещение деталей в соединении ограниче­но деформациями за счет сил сцепления, которые возникают благодаря контактным напряжениям q от натяга.
Если принять, что отнесенная к площади контакта сила трения τ пропорциональна контактному напряжению q между сопря­женными деталями, то
 
где f - коэффициент трения.
Условие взаимной неподвижности дета­лей соединения при действии сдвигаю­щей нагрузки примет вид

где d и l - диаметр и длина посадочной поверхности.
 Введем в рассмотрение номинальные контактные напряжения
 ;   тогда

Из неравенства следует, что нагрузочная способность соединения определя­ется номинальными контактными напряжениями и состоянием контактирующих поверхностей. Напряжения зависят от натяга в соединении и условий работы.
Детали соединения будут взаимно не­подвижными, если средние контактные на­пряжения

где k - коэффициент запаса сцепления, учитывающий возможное рассеяние значе­ний коэффициентов трения, погрешности в форме контактирующих поверхностей и изгиб деталей, ослаб­ляющие их сцепление.
Для соединений, подверженных изгибу, например, соединений валов и зубчатых колес редукторов, принимают значение k=3,0?4,5, понижая таким образом склонность соединений к фреттинг-корро­зии. В остальных случаях k=I,5?2,0. Значение коэффициента сцепления в формуле следует принимать минимальным из или устанавливать экспериментально.
Нагрузочная способность соединения может быть увеличена также за счет повы­шения коэффициента трения между деталями. Эффективным оказы­вается осаждение на поверхности вала тон­кого слоя из частиц карбида бора В4С или карбида кремния SiC. Такой слой повышает коэф­фициент трения в соединении с натягом до 0,7 благодаря эффекту микрозацепле­ния и, как следствие, в несколько раз увеличи­вает нагрузочную способность соединения при неизменном натяге.
9,3
Рисунок 24 – Внешние силы действующие на соединение
Сдвигающая сила может быть осевой, т. е.

или окружной (тангенциальной), т. е.

При совместном действии осевой силы и вращающего момента принимают

Уравнение выражает связь внеш­них и внутренних силовых факторов. Для решения задачи следует выразить контакт­ные напряжения через смещения точек деталей.
Условие совместности пере­мещений сопряженных деталей. Предположим, что охватывающая деталь 2 запрессована на охватываемую деталь 1. Тогда в резуль­тате деформации точки поверхностей де­талей 1 и 2 получат радиальные перемещения u1 и u2, а радиальный натяг δ будет скомпенсирован этими перемеще­ниями, т. е.

где Δ = dВ- dА - диаметральный натяг деталей.
Уравнение отражает геометричес­кую сторону задачи. Для ее решения необходимо выразить смещения в уравне­нии через контактные напряжения.
Связь смещений и контакт­ных напряжений в соединении. Контактные напряжения q в общем случае распределены по длине соединения  существенно неравномерно, так как равномерной деформации препятствуют выступающие части деталей. Связь смещений и контактных давлений имеет вид

где  - функция влияния, показы­вающая перемещение точек контакта в сечении z = с от единичной радиальной силы, приложенной в сечении z=ζ; i= 1; 2 - номер детали.
Значения функции λ можно получить расчетом.
В предварительном расчете полагают, что контактные напряжения одинаковы во всех точках поверхностей контакта. Это экви­валентно допущению о сопряжении двух цилиндров одинако­вой длины.
9,4
Рисунок 25 – Расчётная схема соединения с натягом
Задача о сопряжении с натягом двух толстостенных цилиндров бесконечной длины рассмотрена в сопротивлении ма­териалов. Установлено, что радиальные перемещения точек кон­такта
;  
где λ1 и λ2 - коэффициенты радиальной податливости деталей 1 и 2; qн - номинальное контактное напряже­ние.
Смещение u1 считают отрицательным, так как оно происходит в направлении, противоположном направлению оси r.
Соотношения отражают физичес­кую сторону задачи. Коэффициенты ра­диальной податливости зависят от ра­диальных размеров и материалов деталей:

где d - посадочный диаметр; Е1, ν1 и Е2, ν2 - модуль упругости и коэффициент Пуассона соответственно для охватывае­мой и охватывающей деталей; d1 - диа­метр отверстия в охватываемой детали; d2 - наружный диаметр охватывающей детали.
Учитывая равенство, несложно получить:

Отметим, что натяг Δ в равенстве является расчетным и соответствует разности посадочных диаметров деталей с идеально гладкими поверхностями.
Расчет требуемого натяга. Расчетное значение натяга, обеспечиваю­щее передачу соединением внешней сдви­гающей нагрузки, несложно найти, из соотношений:

Расчетный натяг Δ принимают в ка­честве минимального требуемого натяга Δ* (т. e. Δ=Δ*) при тепловом способе сборки.

Где uR – поправка на обмятие шероховатостей, мкм; uR=5,5(Ra1+Ra2)=1,2(Rz1+Rz2); Ra1 и Ra2, Rz1 и Rz- параметры шероховатостей деталей.
Если соединение работает при повы­шенной температуре, то ослабление натяга за счет нагрева учитывают поправкой на температурную деформа­цию:

где α1 и t1 соответственно коэффициент линейного расширения и рабочая темпера­тура охватываемой детали; α2 и t2 - то же, охватывающей детали.
В соединениях быстровращающихся де­талей также происходит «потеря» натяга
где ρ - плотность материала; ν - коэф­фициент Пуассона материала детали; ω - угловая скорость.
При угловой скорости

натяг в соединении исчезнет (qн=0).
С учетом этих замечаний минимальный требуемый натяг: при тепловом способе сборки

при механическом способе сборки

Значение минимального требуемого на­тяга, определяемого условиями нагружения и сборки, используется для подбора минимального натяга посадки (табличного натяга) Nmin:

Тип посадки по ГОСТ 25347-82 задает­ся минимальным Nmin и максимальным Nmах табличными натягами. Для его назна­чения необходимо установить также наи­большее допустимое значение натяга, определяемое условиями прочности.
9,5
Рисунок 26 – Напряжение в поперечном сечении соединения
Расчет макcимального натя­га. Натяг вызывает в соединяемых де­талях радиальные σr и окружные σθ на­пряжения (в соответствии с рисунком 26).
Напряжения в охватываемой детали (вале)

Напряжения в охватывающей детали (ступице)

где d* - диаметр сечения, в котором вы­числяют напряжения.
Распределение напряжений в попереч­ном сечении деталей соединения. Наибольшие напряжения воз­никают у внутренней поверхности охваты­вающей детали (d*=d); здесь
  ;       
Условие отсутствия пластических дефор­маций по теории максимальных касатель­ных напряжений

где  - предел текучести материала де­тали.
Практика показала, что небольшие плас­тические деформации в контакте не пони­жают работоспособности соединений, поэ­тому в расчете максимального допусти­мого контактного напряжения принимают , откуда

и соответствующий наибольший расчетный натяг

Наибольший допустимый натяг Δ*max при тепловом способе сборки равен рас­четному, т. е. Δ*maxmax, а при механи­ческом - Δ*max = Δmax +uR.
По условиям прочности Δ*max≥Nmax, где Nmax - максимальный табличный натяг посадки.
Уменьшение внутреннего диаметра охва­тываемой детали

и увеличение наружного диаметра охватывающей детали

Сила запрессовки

Если , то , где   - наибольшая сдвигающая нагрузка. При этом наименьшая полезная сдвигающая нагрузка

При определении  и  для соеди­нений, выполненных механическим спосо­бом, необходимо из табличных значений натяга Nmax и Nmin вычесть значение uR
Разность температур, необходимая при тепловом способе сборки (нагрев или ох­лаждение),

где  - зазор между деталями при сбор­ке, мкм.
 Табличные натяги. Каждой стан­дартной       посадке      с натягом (ГОСТ 25347- 82) соответствуют определенные значения минимального Nmin и максималь­ного Nmax натягов - табличные натяги. Для построения таблиц ис­пользуют два метода расчета натягов и в соответствии с ними натяги назы­вают предельными и вероятностными.
Предельные натяги определяются откло­нениями отверстий и валов. При посадке по системе отверстий
   
где ES и es - верхнее отклонение соот­ветственно отверстия и вала; ei – нижнее отклонение вала.
Полученные таким образом натяги назы­вают вероятностными. При нормальном законе распределения размеров
             
где Nm - средний натяг; uр - квантиль нормального распределения; SN - среднее квадратическое отклонение табличного на­тяга.
Средний натяг определяется средними значениями отклонений

где    ;      ;
Td и TD – допуски соответственно основного отверстия и вала.
Среднее квадратическое отклонение таб­личного натяга

где       
Квантиль нормального распределения uр принимает следующие значения в за­висимости от вероятности Р неразруше­ния соединения:
P       0,5   0,9     0,95   0,97    0,99    0,995    0,997    0,999
uр          12   1,28   1,64    1,88    2,33    2,58      2,75         0,1

1. Реферат на тему Is Rape Motivated By Sex Essay Research
2. Реферат Специфика нейминга в сфере агентств недвижимости
3. Реферат Социальная система и ценностные ориентации личности 2
4. Задача Финансовый менеджмент 24
5. Реферат Отрасли специализации Дальнего Востока
6. Реферат на тему The Duties Of A Secretary Essay Research
7. Реферат Парламентский контроль в субъектах Российской Федерации
8. Статья Безопасность технологии GPRS
9. Курсовая на тему Цели и приемы аудиторской деятельности
10. Реферат на тему Human Cloning 3 Essay Research Paper Human