Реферат

Реферат Операторный метод расчета переходных процессов в линейных цепях

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025


Реферат

по курсу общая электротехника и электроника

На тему:

«Операторный метод расчета переходных процессов в линейных цепях»

Содержание

Введение

1. Применение преобразования Лапласа и его свойств к расчету переходных процессов

2. Переход от изображения к оригиналу. Формулы разложения

3. Законы цепей в операторной форме

4. Эквивалентные операторные схемы замещения

Список литературы

Введение

Электротехника - это наука о техническом (т.е. прикладном) использовании электрических и магнитных явлений. Большое значение электротехники заключается в том, что средствами электротехники

- эффективно получают и передают электроэнергию;

- решают вопросы

    • передачи и преобразования сигналов и информации: звук человеческой речи преобразуют в электромагнитные колебания (телефон, радио);

    • хранения информации (телеграф, радио, магнитная запись);

- выполняют математические операции: вычислительные машины с огромной скоростью выполняют любые математические операции, в том числе и решение сложных уравнений.

Теоретические основы электротехники заложены физикой (учением об электричестве и магнетизме) и математикой (методами описания и анализа электромагнитных явлений). Наряду с этом развитие электротехники привело к ряду новых физических понятий, новых формулировок физических законов, к развитию специальных математических методов, связанных с описанием и анализом типичных явлений, протекающих именно в электротехнических устройствах.

1 Применение преобразования Лапласа и его свойств к расчету переходных процессов

Этот метод основан на преобразовании Лапласа. Пусть f(t) – оригинал, а F(p) – изображение этого оригинала по Лапласу. Для сокращения применяют такие обозначения: f(t)F(p), F(p)=

Прямое преобразование Лапласа определяется интегралом:

,

Для большого числа функций составлена таблица соответствия изображения и оригинала, кроме того, знание свойств преобразований Лапласа позволяет по небольшому числу выученных изображений находить широкий класс изображений функций.

Основными свойствами являются:

1. Свойство линейности

=, ,

2. ,

3. .

Последними двумя свойствами очень удобно решать дифференциальные уравнения.

Смещение аргумента:

- ,

- .

Свертка:

- .

Предельные соотношения

Они позволяют не находя всего оригинала по изображению найти значение оригинала при t=0 и t→ ∞.

и .

Если известно изображение, то можно перейти к оригиналу одним из трех способов:

1) взять обратное преобразование;

2) взять таблицу;

3) воспользоваться формулами разложения.

Изображение стандартных функций:

1) Ступенчатое воздействие

,

.

2) Дельта-импульс

,

.

Если ступенчатая функция и δ-импульс заданы в момент t1 , используя теорему смещения, получают:

,

.

3)

Пусть α=jω, тогда:

,

с другой стороны по формулам Эйлера:

, .

Изображение синусоиды с нулевой начальной фазой:

,

.

2 Переход от изображения к оригиналу. Формулы разложения

Эти формулы позволяют найти оригинал, если изображение задано дробно-рациональной функцией:

Собственно формулу разложения можно применять только в том случае, когда высшая степень знаменателя выше высшей степени числителя. Если это не так, то сначала нужно поделить числитель на знаменатель, что и позволит привести F(p) к требуемому виду.

Пример:

,

.

Если m<n, то изображение записывают в виде: .

Характеристическое уравнение – выражение F2(p)=0 и, в зависимости от корней в оригинале, появляются соответствующего вида слагаемые, каждое из которых соответствует простейшей дроби.

Чтобы не искать коэффициенты дробей из систем уравнений, пользуются формулами разложения. Они имеют вид:

1) Каждому простому корню характеристического уравнения в оригинале, будет соответствовать слагаемое , где;

2) Среди корней есть пара комплексно сопряженных: , . Можно воспользоваться предыдущей формулой для каждого корня, но проверка показывает, что коэффициенты перед exp оказываются к.с.ч. и можно упростить процедуру, записывая ответ сразу для двух корней в виде: , где - корень с положительной мнимой частью.

Пример:

, ,

,

, .

3) Среди корней есть кратные или одинаковые, в этом случае для группы кратных корней получаются сложные выражения, но если таких корней всего два, им в оригинале будет соответствовать такая запись:

Пример:

,

Из примеров видно, что корню pх=0 в оригинале соответствует величина, которую в классическом методе называют принужденной составляющей. Используя все вышеизложенное, можно в таком порядке рассчитывать переходной процесс.

(1) В схеме до коммутации находят и .

(2) Для схемы после коммутации записывают полную систему уравнений Кирхгофа и применяют к ней прямое преобразование Лапласа. В результате получают систему операторных уравнений.

(3) Из этой системы находят изображение искомой величины и переходят к оригиналу. Так обычно поступают, когда вся схема описывается одним уравнением. В сложных цепях этот путь не эффективен, так как он позволит убрать только один недостаток классического метода (поиск начальных условий). Второй недостаток – уравнения можно писать только по законам Кирхгофа – остался. Чтобы и его убрать, формулируют в операторной форме законы цепей и строят операторные схемы замещения.

3 Законы цепей в операторной форме

Применим к законам Кирхгофа для мгновенных значений прямое преобразование Лапласа.

Пример:

В некоторой схеме для некоторого узла имеем уравнение: . Изображение источника легко находится (см. начало операторного метода). Например, если .

Пусть в некотором контуре выполняется уравнение:

,

.

Тогда применяя преобразования Лапласа, получим:

4 Эквивалентные операторные схемы замещения

Анализ полученных выражений позволяет раз и навсегда нарисовать операторные схемы замещения элементов, из которых можно строить операторную схему замещения всей послекоммутационной схемы.

Из примеров видно, что источник тока отображается изображением источника тока, а ЭДС – изображением источника ЭДС.

Если бы в схеме был управляемый источник , то . Аналогично с управляемым источником тока. Для учета взаимных индуктивностей можно поступить аналогично, при этом в схеме замещения появятся дополнительные источники ЭДС и .

Если же до коммутации в индуктивностях тока не было (расчет переходной и импульсной характеристики, передаточной функции), то никаких дополнительных источников не появится, а просто надо будет по прежним правилам учитывать напряжение взаимной индукции.

Пример:

С учетом сказанного, под операторным методом понимают такой порядок действий.

1) В схеме до коммутации рассчитывают и .

2) Рисуют операторную схему замещения цепи после коммутации.

3) Самым эффективным методом находят изображение той величины, которую надо найти.

4) Переходят от изображения к оригиналу.

Список литературы:

1. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М.Милюков, В.П.Рынин; Под ред. В.П.Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)

2. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н.Зуб, С.М.Милюков. Рязань, 2005. 16 с.

3. Основы анализа и расчета линейных электрических цепей: Учеб. пособие/ Н.А.Кромова. –2-е изд., перераб. и доп.; Иван. гос. энерг. ун-т. –Иваново, 1999. -360 с.

4. Голубев А.Н. Методы расчета нелинейных цепей: Учеб. пособие/ Иван. гос. энерг. ун-т. –Иваново, 2002. -212 с.

5. Теоретические основы электротехники. / Г.И.Атабеков, С.Д.Купалян, А.В.Тимофеев, С.С.Хухриков.-М.: Энергия, 1979. 424 с.

6. М.Р.Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.


1. Реферат на тему Esp Essay Research Paper Extra Sensory Perception
2. Реферат Здравозахоронение
3. Реферат на тему Rocked Out Essay Research Paper Outline Thesis
4. Реферат Особенности монополии и монополизма в условиях рыночных и нерыночных отношений
5. Курсовая Сущность бухгалтерского учёта на предприятии
6. Реферат на тему The Black Vote African Americans As An
7. Реферат на тему Деловая письменность в системе старобелорусского литературного языка
8. Реферат Сущность и экономическое содержание туризма
9. Курсовая Методы расчета цифровых БИХ-фильтров и вид целевой функции
10. Реферат на тему GHB Essay Research Paper GHB or GammaHydroxy