Реферат

Реферат Спектральные характеристики

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025






























Спектральные характеристики

Демидов Р.А., ФТФ, 2105

Введение

В первой части работы я поставил себе цель описать линейные операторы в целом, а также подробно рассказать о важной характеристике спектра операторов – спектральном радиусе.

В этой части работы я подробнее остановлюсь на не менее важной характеристике спектров – резольвенте, и расскажу о связи этой характеристики с подвидами спектра оператора – с остаточным, точечным и непрерывными его частями. Вначале, опять же, необходимо остановиться на некоторых основных определениях и понятиях теории линейных операторов. Итак:

  • Пусть A - оператор, действующий в конечномерном линейном пространстве E. Спектром оператора называется множество всех его собственных значений.

  • Квадратную матрицу n×n можно рассматривать как линейный оператор в n-мерном пространстве, что позволяет перенести на матрицы «операторные» термины. В таком случае говорят о спектре матрицы.

  • Пусть A - оператор, действующий в банаховом пространстве E над полем k. Число λ называется регулярным для оператора A, если оператор R(λ) = (A − λI)-1, называемый резольвентой оператора A, определён на всём E и непрерывен.

  • Множество регулярных значений оператора A называется резольвентным множеством этого оператора, а дополнение резольвентного множества - спектром этого оператора.

  • Максимум модулей точек спектра оператора A называется спектральным радиусом этого оператора и обозначается через r(A). При этом выполняется равенство:

Это равенство может быть принято за определение спектрального радиуса,приусловии существования данного предела.

Теперь рассмотрим состав самого спектра. Он неоднороден, и состоит из следующих частей:

  • дискретный (точечный) спектр - множество всех собственных значений оператора A - только точечный спектр присутствует в конечномерном случае;

  • непрерывный спектр - множество значений λ, при которых резольвента (A - λI)-1 определена на всюду плотном множестве в E, но не является непрерывной;

  • остаточный спектр - множество точек спектра, не входящих ни в дискретную, ни в непрерывную части.

Таким образом, мы видим, что спектр оператора состоит из 3-х больших частей, принципиально различных.

Свойства резольвенты

Теорема 1: ограничен. Тогда является регулярной точкой.

Доказательство. . Пусть. Тогда .

- банахово, , причем он ограничен:





Резольвента существует и ограничена. Чтд.

Теорема 2: не принадлежит точечному спектру осуществляет биекцию на .

Доказательство.

  • Если построена биекция, то не существует , за исключением тривиальной.

Если - точка точечного спектра, то , что противоречит биективности .

Теорема 3: (Тождество Гильберта)

Доказательство.



,,

,верно => Чтд.



Следствия:

- коммутативность резольвенты.

(т.к. непрерывна по в точке ), т.е. она бесконечно дифференцируема (аналитическая функция).

Итак, - аналитическая оператор-функция на множестве регулярных точек (резольвентном множестве). - разложение в ряд Лорана (имеет место при , но, возможно, и в большей области).

Упражнение: (Примеры вычисления спектрального радиуса)



,

.



Возьмем.Тогда





Таким образом . Эта оценка достижима при , т.е. rc(A)=1.

Теорема 4: всякая к.ч , есть регулярная точка самосопряженного оператора A.

Доказательство.

] регулярная точка, значит не собственное значение и . Проверим ограниченность .





ограничен, и его можно распространить на с сохранением нормы оператора, так как не собственое значение. Если при этом не замкнуто, то не замкнут. При этом линейный оператор, обратный к замкнутому, а также сопряженный к нему, замкнут => самосопряженный оператор замкнут.



Спектральная теория в электронике

Полезнейшим приложением спектральной теории в физике является теория спектров электрических сигналов. Суть теории состоит в том, что любой сигнал на входе линейной цепи возможно представить совокупностью гармонических колебаний, или тестовых сигналов, заданной частоты, вопрос такого разложения состоит в нахождении амплитуд результирующих колебаний. Последние вычисляются определенным образом.



Классическое преобразование Фурье представляет из себя линейный оператор.

Спектральная теория здесь работает следующим образом – для периодических входных сигналов для нахождения соответствующих амплитуд используется интегральное преобразование – дискретный Фурье- образ:



в котором разложение начинается с частоты следования wк. В данном случае очевидно, что, раз выходной сигнал представляется суммой бесконечного ряда, то мы имеем дело с точечным спектром сигнала, поскольку он дискретен. Следовательно, любое периодическое колебание можно рассматривать как сигнал с дискретным спектром, поскольку непрерывным спектром он не обладает. Однако, если же взять непериодический сигнал, например, единичный прямоугольный импульс, то вводится понятия прямого и обратного преобразований Фурье:



,



где S(w) – спектральная плотность сигнала s(t).

Соответственно, S(w) – непрерывная по w функция, и в данном.

Заключение

В работе не ставилась цель охватить весь курс спектральной теории и спектрвльных характеристик, а ставилась цель изучить основные спектральные характеристики линейных операторов, и обрисовать применение этих понятий. Опять же, класс Фурье преобразований включает в себя намного больший объем, чем тот, о котором упомянуто в работе, они используются в теории алгоритмов при кодировке и сжатии информации в цифровом формате изображений JPEG, в вейвлет - преобразованиях. Новое поколение функциональной электроники содержит на элементарном уровне элементы, способные производить непрерывные преобразования Фурье и Лапласа, что намного ускоряет работу электронных устройств.

В общем и целом, наряду с первой частью работа дает представление о б основных спектральных характеристиках линейных операторов и их применении в различных областях математики, информатики и физики.

Список литературы

  1. Лекции по математической физике, Попов И.Ю., СПбГУ ИТМО, кафедра высшей математики.

  2. Элементы теории функций и функционального анализа, А.Н. Колмогоров и С.В. Фомин.

  3. Теория цепей и сигналов, Новиков Ю.Н.

  4. Свободная энциклопедия Википедия.

  5. Сжатие данных, изображения и звука, Д. Сэломон.


1. Реферат Основи невербальної комунікації
2. Доклад на тему Русская журналистика 1840-х годов
3. Контрольная работа Характеристика преобразователей. Кузов и рама вагона
4. Реферат на тему Why Did Germany Lose World War II
5. Реферат Причины развода
6. Биография на тему Разумовский Дмитрий Васильевич
7. Контрольная работа Контрольная работа по Бухгалтерскому учету 16
8. Методичка на тему Основные идеи марксистской философии
9. Реферат Биографические исследования в социологи и культуры
10. Биография Чатопадайя, Вирендранат