Реферат

Реферат Аминокислоты 2

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024


Содержание:

Введение

Классификация аминокислот

Виды изомерии аминокислот

Двухосновные моноаминокислоты

Одноосновные диаминокислоты

Оксиаминокислоты

Серосодержащие аминокислоты

Гетероциклические аминокислоты

Способы получения аминокислот

Химические свойства аминокислот:

А) Свойства аминокислот, зависящие от наличия карбоксила.

Б) Свойства аминокислот, зависящие от наличия аминогруппы.

В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы

Окислительно-восстановительные процессы, протекающие с участием аминокислот.

Связывание минерального азота аминокислотами.

Список использованной литературы

Введение

Аминокислоты - такие кислоты, которые помимо карбоксильной группы содержат аминогруппу NH2.



Классификация аминокислот

1) по углеводородному радикалу (предельные, непредельные, ароматические, циклические, гетероциклические.)

2) по числу карбоксильных групп (одноосновные, двухосновные и тд.)

3) по числу аминогрупп (моноамино, диамино и тд.)

4) по наличию других функциональных групп (оксиаминокислоты, серосодержащие аминокислоты)

Виды изомерии аминокислот

1) изомерия углеродного скелета

2) изомерия положения аминогруппы: 2,β, γ и α

В природных условиях, как правило, встречаются α-аминокислоты. Они образуют мономерные звенья белковых молекул, то есть входят в состав белка.

3) оптическая изомерия. Аминокислоты, которые встречаются в природе L-ряда. Рассмотрим оптическую изомерию на примере α-аминопропионовой кислоты.

СH3*CHC = O α-аминопропионовая кислота, или аланин.

NH2 OH

Оптические изомеры:

ОН OH

С = О C = O

Н – С – NH2 H2NCH

CH3 CH3

D-изомер(-) L- изомер (+)



L – изомеры отличаются от D – изомеров вкусом. D-изомеры сладкие, а L- изомеры горькие или безвкусные. Природные аминокислоты это L- изомеры. В биологическом отношении аминокислоты очень важные соединения, так как из их остатков строятся белковые молекулы. В состав белков входят 20-25 аминокислот. Это следующие:



1) СH2C = O аминоуксусная кислота, или глицин

NH2 OH

2)CH3CHC = O α- аминопропионовая кислота, аланин

NH2 OH

3) СH3 – CH – CH – C = O валин

CH3 NH2 OH

4) CH3 – CH – CH2 – CH – C = O лейцин

CH3 NH2 OH

5) CH3 – CH2 – CH – CH – C = O изолейцин

CH3 NH2 OH

6) C6H5 – CH2 – CH – C = O фенилаланин

NH2 OH



Двухосновные моноаминокислоты



1) O = CCHCH2C = O аспарагиновая кислота

HO NH2 OH

Амид этой кислоты называется аспарагин. Причем на аминогруппу замещается гидроксил наиболее удаленный от аминогруппы:

O = CCHCH2C = O - аспарагин

HO NH2 NH2

2) O = CCHCH2CH2C = O - глутаминовая кислота

HO NH2 OH

O = CCHCH2CH2C = O – глутамин (амид глутаминовой кислоты)

HO NH2 NH2

Одноосновные диаминокислоты

1) CH2CH2CH2CHC = O - орнитин

NH2 NH2 OH

2) CH2 – CH2 – CH2 – CH2 – CH – C = O - лизин

NH2 NH2 OH

3) NH = CNHCH2CH2 - CH2CHC = O -аргинин, в процессе обмена преобразуется в к-ту цитруллин

NH2 NH2 OH

4) NH2 – C – NH – CH2 – CH2 – CH2 – CH – C = O -цитруллин

O NH2 OH

Оксиаминокислоты

1) СH2 – CH – C = O - серин

OH NH2 OH

2) CH3 – CH – CH – C = O - треонин

OH NH2 OH

3) HO –C6H4 – CH2 – CH – C = O – оксифенилаланин или тирозин

NH2 OH





Серосодержащие аминокислоты

1) CH2 – CH – C = O - цистеин

SH NH2 OH

2) CH2 – CH – C = O - цистин

S NH2 OH

S

CH2 – CH – C = O

NH2 OH

3) CH3 – S – CH2 – CH2 –CH – C = O метионин

NH2 OH

Гетероциклические аминокислоты

1) H2C CH2 2) OH – HC CH2

OH

H2C CH – C = O H2C CH – C =O

NH OH NH

пролин оксипролин

3) N C – CH2 – CH – C = O 4) CH NH2 OH

NH2 OH HC C C – CH2 – CH – C = O

HC CH HC C CH

NH CH NH

гистидин триптофан



Среди всех аминокислот 9 являются незаменимыми, то есть они в тканях синтезироваться не могут и должны поступать с пищей. Это кислоты:

  1. Валин;

  2. Лейцин;

  3. Изолейцин;

  1. Фенилаланин;

  2. Лизин;

  3. Треонин;

  4. Метионин;

  5. Гистидин;

  6. Триптофан.

Способы получения аминокислот

1.Аминокислоты получаются при гидролизе белка, который протекает при нагревании белковых веществ при температуре равной 1000С , в присутствии серной кислоты в течении 24-48 часов. Этот способ применяется при количественном и качественном определении аминокислот в белке, как правило, методом хроматографии.

2.Действие аммиака на галогенкислоты:

CH2C = O + NH3 HCL + CH2C = O

CL OH NH2 OH

хлоруксусная глицин

кислота

3. Присоединение аммиака к непредельным кислотам (таким способом получают β-аминокислоты).

CH2 = CH – C = O + HNH2 CH2 – CH2 – C = O

OH NH2 OH

акриловая к-та β – оксипропионовая к-та



Присоединение водорода идет против правила Марковникова, так как сопряженные двойные связи.

4.Восстановительное аминирование. Протекает в растительных и животных организмах. Это способ связан с введением аминогруппы в кетокислоту. Протекает в два этапа:

ОН OH ОН

С = О +NH3 C = O +2H. С = O

С = О -H2O C = NH СHNH2

СН3 CH3 CH3

пировино- иминокислота аланин

градная к-та



Химические свойства аминокислот:

Они зависят от наличия:

1)карбоксильной группы

2)аминогруппы

3)от совместного наличия двух этих групп.

А) Свойства аминокислот, зависящие от наличия карбоксила.

Аминокислоты, как и любые кислоты, способны образовывать: а)соли; б)галогенангидриды; в)сложные эфиры; г)амиды; д)ангидриды; е)подвергаются декарбоксилированию.



R – CH – C = O + H2O - соль

NH2 ONa NH2 CL

R – CH – C = O –хлорангидрид

R – CH – C = O R – CH – C = O + H2O

NH2 OH NH2 O – CH3сложный эфир

R – CH – C = O + H2O

NH2 NH2амид

RCH2 - амин

NH2

Реакция декарбоксилирования аминокислот протекает в присутствии ферментов декарбоксилаз, а также при разложении белковых соединений, в результате таких реакций образуются амины (низшие амины содержатся в кишечных газах и имеют неприятный запах).



NH2 – CH2 – CH2 – CH2 – CH2 – CH – C = O -CO2 NH2 – (CH2)5 – NH2

лизин NH2 OH диамин пептаметилендиамин (кадаверин)



Б) Свойства аминокислот, зависящие от наличия аминогруппы.

1) Реакции ацилирования (ацил- радикал кислоты). По этой реакции один водород аминогруппы замещается на радикал кислоты – ацил. Примером может служить реакция обезвреживания бензойной кислоты в организме животных:

C6H5 – C = O + HNH2 – CH2 – C = O C6H5 – C = O OH

OH OH NHCH2C = O

бензойная к-та глицин гиппуровая к-та

2) Реакция аминирования (амин- углеводородный радикал). По этой реакции один водород аминогруппы замещается на углеводородный радикал – амин (такие реакции проводятся в лаборатории, когда надо протитровать аминокислоту, то есть количественно определить аминокислоту).



OH

CH3 – CH – C = O + CH3 – I HI + CH3 – CH – C = O

NH2 OH NHCH3

аланин пористый

метил



По этой реакции аминогруппа как бы зажимается в тиски, блокируется и становится нереакционноспособной. Реакционноспособной становится только карбоксильная группа.

3) Реакции дезаминирования. Дезаминирование- это отщепление аминогруппы в виде аммиака. Такие реакции протекают в обменных процессах, а часто и при нарушении обмена. Они ведут к распаду аминокислот. Различают четыре вида дезаминирования:

а) окислительное дезаминирование.

OH OH OH

C = O +O C = O +H2O C = O + NH3

CHNH2 ОКИСЛЕНИЕ C = NH C = O

CH3 CH3 CH3

аланин иминокислота кетокислота (пировиноградная)



Окислительное дезаминирование – процесс, обратный восстановительному аминированию.

б) восстановительное дезаминирование. Протекает под действием водорода:



OH OH

C = O +2H C = O + NH3

CHNH2 CH2

CH3 CH3

аланин пропионовая(предельная) к-та

в) гидролитическое дезаминирование. Протекает под действием воды. При этом из аминокислоты образуются оксикислоты:

OH OH

C = O +HOH C = O + NH3

CH – NH2 CH – OH

CH3 CH3

аланин оксикислота (молочная)

г) внутримолекулярное дезаминирование:

R R

CH2 CH

CHNH2 ПРОТЕКАЕТ В ОСНОВНОМ В МИКРООРГАНИЗМАХ CH + NH3

C = O C = O

OH OH

непредельная к-та

Основной путь дезаминирования – это окислительное дезаминирование. Этот вид дезаминирования преобладает у животных, растений и большинства микроорганизмов. Происходит под действием ферментов дегидрогеназ. Однако, активность дегидрогеназы тканей животных для большинства аминокислот очень низкая. Активна только дегидрогеназа глутаминовой кислоты. Поэтому большинство аминокислот в организме животных дезаминируются непрямым путем. Непрямое окислительное дезаминирование характеризуется предварительным переаминированием аминокислот с α- кетоглутаровой кислотой:

COOH COOH

R CH2 R CH2

CH – NH2 + CH2 C = O + CH2

COOH C = O COOH CH – NH2

COOH COOH

амино- α-кетоглутаровая кетокис- глутаминовая

кислота к-та лота кислота

Образующаяся при этом глутаминовая кислота затем дезаминируется под действием глутаматдегидрогеназы до α-кетоглутаровой кислоты, которая может снова участвовать в непрямом дезаминировании других аминокислот.

COOH COOH COOH

CH2 CH2 CH2

CH2 -2H CH2 +H2O CH2 + NH3

CH – NH2 C = NH C = O

COOH COOH COOH

глутаминовая иминокислота α-кетоглутаовая к-та

к-та

В) Свойства аминокислот, зависящие от совместного наличия карбоксильной и аминогруппы

1)Амфотерные свойства одноосновных моноаминокислот. Реакция водных растворов таких аминокислот на лакмус нейтральна. Это объясняется тем, что карбоксильная группа обладает кислотными свойствами, а аминогруппа – основными. Эти группы взаимодействуют с образованием, так называемых внутренних солей. Внутренние соли – это соли, образующиеся в результате взаимодействия кислотных и основных групп, находящихся в пределах одной и той же молекулы. При образовании внутренних солей аминокислот ион водорода отщепляется от карбоксильной группы и присоединяется к аминогруппе, которая превращается как бы в ион замещенного аммония. Например, для аланина:

CH3CHC = O CH3CHC = O -

NH2 OH +NH3 O

внутренняя соль (имеет два полюса + и -).

ОН

Такие аминокислоты ( с одной – С = О и одной NH2) обладают амфотерными свойствами, они могут реагировать как с кислотами, так и с основаниями, образуя при этом комплексные соли. Взаимодействие аминокислоты с кислотой:



CH3 – CH – C = O + H+CL- CH3 – CH – C = O +

+NH3 O- NH3 OH CL-

комплексная соль, где аминокислота является катионом

Взаимодействие со щелочью:

CH3CHC = O + NaOH CH3CHC = O

+NH3 O- NH2 O- Na+ + H2O

комплексная соль, где аминокислота является анионом



2) Образование ди- три и полипептидов. Эта реакция протекает в организме под действием ферментов пептидаз. Она ведет к образованию первичной структуры белка. При образовании дипептида две аминокислоты связываются пептидной связью. При этом одна аминокислота реагирует карбоксильной группой , а другая – аминогруппой.



CH3 – CH – C = O + HNH – CH2 – C = O -H2O CH3 – CH – C – NH – CH2 – C = O

NH2 OH OH NH2 O OH

аланин глицин дипептидаланинглицин

С = О -пептидная связь

NH



Та аминокислота, от которой уходит гидроксил карбоксильной группы, то есть остается кислотный радикал – ацил, меняет окончание «ин» на «ил».

3) Особое поведение аминокислот при нагревании, в присутствии водоотнимающих веществ.

а) α- аминокислоты при нагревании образуют циклические амиды – дикетопиперазины. взаимодействуют две молекулы :

H3C H3C

CH – C = O CH – C = O

H2N OH -2H2O NH NH

HO NH2 O = C – HC

O = CCH CH3

CH3 дикетопиперазин (2, 5 –диметил – 3, 6 дикетопиперазин)

Для разных кислот радикалы при группе – СН могут быть разными, а ядро дикетопиперазина одно и то же. По мнению русских ученых Землинского, Садикова дикетопиперазины содержатся в полипептидных цепях. Они связывают остатки аминокислот также, как и пептидные связи.

б) β-аминокислоты при нагревании теряют молекулу аммиака и превращаются в непредельные кислоты.

CH3 – CH – CH2 – C = O -NH3 CH3 – CH = CH – C = O

NH2 OH OH

Β-аминомасляная к-та кротоновая к-та

в) γ-аминокислоты при нагревании, выделяя воду , образуют внутримолекулярные циклические амиды, так называемые лактамы:

CH2 – CH2 – CH2 – C = O H2C – CH2

NH2 OH H2C C = O - лактам γ-аминомасляной к-ты

γ-аминомасляная к-та NH



Лактам капроновой кислоты при полимеризации образует волокно-капрон.

Окислительно-восстановительные процессы, протекающие с участием аминокислот.

Эти процессы протекают в организмах растений и животных. Имеются такие соединения, которые способны либо выделять водород, либо поглощать его (присоединять). При биологическом окислении идет отщепление двух атомов водорода, а при биологическом восстановлении – присоединение двух томов водорода. Рассмотрим это на примере цистеина и цистина.

CH2CHC = O CH2CHC = O

HS NH2 OH -2H S NH2 OH

HS NH2 OH +2H S NH2 OH

CH2 – CH – C = O CH2 – CH – C = O

цистеин цистин

восстановленная форма окисленная форма

Две молекулы цистина, теряя два атома водорода, образуют окисленную форму – цистеин. Этот процесс обратимый, при присоединении двух атомов водорода к цистину образуется цистеин - восстановленная форма. Аналогично протекает процесс окислительно- восстановительный на примере трипептида – глутатиона, который состоит из трех аминокислот: глутаминовой, глицина и цистеина.

цистеин

O = C – NH – CH – CH2 – SH O = C – NH – CH – CH2 – S – S –CH2 – CH – NH – C = O

CH2 C = O -2Н CH2 C = O C = O CH2

CH2 NH +2Н CH2 NH NH CH2

CH – NH2 CH2 глицин CH – NH2 CH2 CH2 CH – NH2

C = O C = O C = O C = O C = O C = O

OH OH OH OH OH OH

(2 молекулы)

трипептид восстановленная форма гексапептид – окисленная форма

При окислении отщепляется 2 атома водорода и соединяются две молекулы глутатиона и трипептид превращается в гексапептид, то есть окисляется.

Связывание минерального азота аминокислотами.

У растений при избытке азота в почве аминокислоты (аспарагиновая и глутаминовая) способны связывать его в виде аммиака с образованием амидов – глутамина и аспарагина.



OH NH2

C = O C = O

CH2 CH2

CH2 + NH3 CH2

CH – NH2 CH – NH2

C = O C = O

OH OH

глутаминовая к-та глутамин

Аналогично идет образование аспарагина. В организмах животных также образуются амиды аспарагиновой и глутаминовой кислот, которые являются резервом (депо) азота.

Аммиак, который образуется при дезамиировании аминокислот, может связываться аспарагиновой и глутаминовой кислотами. При этом образуются амиды аспарагин и глутамин.



Список использованной литературы:

1) Овчинников Ю.А. Биоорганическая химия / Ю.А. Овчинников. – М.: Просвещение, 1987.

2) Яковишин Л.А. Избранные главы биоорганической химии / Л.А. Яковишин. – Севастополь: Стрижак-пресс, 2006.

3) Филиппович Ю.В. Основы биохимии. - М., 2007

4) Нейланд О.Я. Органическая химия.- М., 1990


1. Реферат Звукоизоляция автомобиля
2. Реферат Стретегический менеджмент
3. Реферат на тему Средневековая Испания
4. Топик Особенности антонимического перевода
5. Диплом Организационно-экономическая характеристика ОАО Гостиница Полярные зори
6. Контрольная работа на тему Нравственные проблемы эвтаназии
7. Контрольная работа на тему Типология управленческих решений
8. Реферат Сурикат
9. Курсовая на тему Инвестиционная деятельность коммерческих банков 2
10. Реферат на тему Miles The Autobiography Essay Research Paper Miles