Реферат

Реферат Позиционные звенья

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 5.2.2025


ПОЗИЦИОННЫЕ ЗВЕНЬЯ

ВВЕДЕНИЕ

Позиционные звенья - это такие звенья , в которых выходная и входная величины в установившемся режиме связаны линейной зависимостью y(t)=kg(t).Соответственно, переходная функция будет иметь вид

W(s)=k,

где N(s), L(s) - многочлены.

1. ИДЕАЛЬНОЕ УСИЛИТЕЛЬНОЕ (БЕЗЫНЕРЦИОННОЕ) ЗВЕНО

1. Данное звено описывается следующим уравнением:

aoy(t)=bog(t) (1)

Коэффициенты имеют следующие значения:

ao=2

bo=4

Запишем уравнение в стандартной форме. Для этого разделим (1) на ao:

y(t)=g(t)

y(t)=kg(t) (2),

где k=-коэффициент передачи.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

y(t)=kg(t) (3)

2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

Y(s)=kG(s)

W(s)=k (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1. Тогда

h(t)=k1(t) (5)

Функцию веса можно получить дифференцированием переходной функции:

w(t)==kd(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:

k=2

h(t)=2×1(t)

w(t)=2×d(t)

Переходная функция представляет собой ступенчатую функцию с шагом k=2, а функция веса - импульсную функцию, площадь которой равна k=2.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=k

W(jw)=k (7)

W(jw)=U(w)+jV(w)

U(w)=k

V(w)=0

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=½W(jw)½

A(w)=k (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=0 (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lgk

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

A(w)=2

j(w)=0

L(w)=20lg2

U(w)=2

V(w)=0

Вывод: Примером рассмотренного звена может являться механический редуктор, делитель напряжения, индукционные датчики и т.д. Но беэынерционное звено является некоторой идеализацией реальных звеньев. В действительности ни одно звено не может равномерно пропускать все частоты от нуля до бесконечности. Обычно к такому виду сводится одно из реальных звеньев , рассмотренных ниже , если можно пренебречь влиянием динамических процессов.

2. УСИЛИТЕЛЬНОЕ ЗВЕНО С ЗАПАЗДЫВАНИЕМ

1. Данное звено описывается следующим уравнением:

aoy(t)=bog(t-t) (1)

Коэффициенты имеют следующие значения:

ao=2

bo=4

t=0,1с

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

y(t)= g(t-t)

y(t)=kg(t-t) (2),

где k=-коэффициент передачи.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

y(t)=kg(t-t) (3)

2. Получим передаточную функцию для идеального звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

g(t-t)=G(s)e-ts

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

Y(s)=kG(s) e-ts

W(s)= ke-ts (4)

3. Найдем выражения для переходной функции и функции веса. ПО определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1.Тогда

h(t)=y(t)=k g(t-t)=k1(t) (5)

Функцию веса можно получить дифференцированием переходной функции:

w(t)==kd(t-t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи и временные характеристики:

k=2

h(t)=2×1(t-t)

w(t)=2×d(t-t)

Переходная функция представляет собой ступенчатую функцию с шагом k=2 и запаздыванием на t=0,1с, а функция веса - импульсную функцию с таким же запаздыванием, площадь которой равна k=2.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=k e-ts

W(jw)=k e-jwt =k(costw-jsintw) (7)

W(jw)=U(w)+jV(w)

U(w)=k costw

V(w)=-ksintw

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=½W(jw)½

A(w)=k (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)= tw (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lgk

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

A(w)=2

j(w)=0,1w

L(w)=20lg2

U(w)=2cos0,1w

V(w)=-2sin0,1w

3. УСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-го ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a1 + aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a1=1,24

ao=2

bo=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

+y(t)=g(t)

T1 +y(t)=kg(t) (2),

где k=-коэффициент передачи,

T1=-постоянная времени.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(T1 p+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:

y(t)=Y(s)

=sY(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

T1 sY(s)+Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)==

Переходя к оригиналу, получим

h(t)=k×1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)×1

W(s)==

Переходя к оригиналу, получим

w(t)= e ×1(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

k=2

T1 =0.62

h(t)=2 ×1(t)

w(t)=3.2e×1(t)

Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)= (7)

W(jw)=U(w)+jV(w)==-j

U(w)=

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции,т.е.

A(w)=½W(jw)½

A(w)== (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=arctgk - arctg

j(w)=-arctgT1 (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lg

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

T1 =0.62

A(w)=

j(w)=arctg0.62w

L(w)=20lg

U(w)=

V(w)=

4. НЕУСТОЙЧИВОЕ АПЕРИОДИЧЕСКОЕ ЗВЕНО 1-ГО ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a1 - aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a1=1,24

ao=2

bo=4

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

-y(t)=g(t)

T -y(t)=kg(t) (2),

где k=-коэффициент передачи,

T=-постоянная времени.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(T p-1)y(t)=kg(t) (3)

2. Получим передаточную функцию для апериодического звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

T sY(s)-Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)==

Переходя к оригиналу, получим

h(t)=k×1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)×1

W(s)==

Переходя к оригиналу, получим

w(t)= e ×1(t) (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

k=2

T =0.62

h(t)=2 ×1(t)

w(t)=3.2e×1(t)

Переходная функция представляет собой экспоненту. Множитель 1(t) указывает ,что экспонента рассматривается только для положительного времени t>0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)= (7)

W(jw)==j=U(w)+jV(w)

U(w)=

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=½W(jw)½

A(w)== (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=arctgk - arctg

j(w)=-arctg(-Tw) (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lg

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

k=2

T =0.62

A(w)=

j(w)=-arctg(-0.62w)

L(w)=20lg

U(w)=

V(w)=

5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-ГО ПОРЯДКА

1. Данное звено описывается следующим уравнением:

a2+a1 + aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a2=0,588

a1=50,4

ao=120

bo=312

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

++y(t)=g(t)

+T1 +y(t)=kg(t) (2),

где k=-коэффициент передачи,

T1=,T22=-постоянные времени.

Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:

T1=0,42

2T2=0,14

0,42>014, следовательно, данное уравнение - апериодическое.

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(p2+T1 p+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

=s2Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

s2Y(s)+T1 sY(s)+Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)== ,

Где T3,4=

Разложив на элементарные дроби правую часть этого выражения, получим

H(s)=

=

Переходя к оригиналу, получим

h(t)=k×1(t) =

k ×1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)×1==

Разложив на элементарные дроби правую часть этого выражения, получим

w(s)=

=

Переходя к оригиналу, получим

w(t)= =

= (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)= (7)

Выделим вещественную и мнимую части :

W(jw) ==

U(w)=

V(w)=

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=½W(jw)½

A(w)==..(8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.

6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО

1. Данное звено описывается следующим уравнением:

a2+a1 + aoy(t) =bog(t) (1)

Коэффициенты имеют следующие значения:

a2=0,588

a1=0,504

ao=12

bo=31,20

Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:

++y(t)=g(t)

+T1 +y(t)=kg(t) (2),

где k=-коэффициент передачи,

T1=,T22=-постоянные времени.

Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения:

T1=0,042

2T2=0,14

0,042<014, следовательно, данное уравнение - колебательное.

Представим данное уравнение в следующем виде:

пусть T2=T, .

Тогда уравнение (2):

Здесь T - постоянная времени, x - декремент затухания (0<x<1).

Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:

(p2+2xTp+1)y(t)=kg(t) (3)

2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:

y(t) = Y(s)

=sY(s)

=s2Y(s)

g(t)=G(s)

По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:

s2Y(s)+2xT sY(s)+Y(s)=kG(s)

W(s)= (4)

3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа

h(t)=H(s)

H(s)=W(s)=

Разложив на элементарные дроби правую часть этого выражения, получим

H(s)==

=

Заменим в этом выражении ,.Тогда

H(s)==

=

Переходя к оригиналу, получим

h(t)=k =

=k ×1(t) (5)

Функцию веса можно получить дифференцированием переходной функции

w(t)=

или из преобразований Лапласа

w(t)=w(s)

w(s)=W(s)×1===

=

Переходя к оригиналу, получим

w(t)= (6)

4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:

5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:

W(s)=

W(jw)= (7)

Выделим вещественную и мнимую части :

W(jw)=

U(w)=

V(w)

6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.

A(w)=½W(jw)½

A(w)== (8)

Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.

j(w)=argW(jw)

j(w)=argk - arg(2xTjw - T2w2+1)= - arctg

j(w)= - arctg (9)

Для построения логарифмических частотных характеристик вычислим

L(w)=20lg A(w)

L(w)=20lg


1. Курсовая Правовий статус комунальних підприємств
2. Отчет по практике на тему Особенности управленческой структуры казино Las Vegas г Кингисеппа
3. Реферат на тему Carolina Arboleda Essay Research Paper Carolina Arboleda
4. Реферат на тему Оценка транспортных средств
5. Курсовая на тему Инновационная деятельность 3
6. Реферат Образовательный компонент как стимул долговременной физкультурно-спортивной деятельности обучаем
7. Лабораторная_работа на тему Файли configsys та autoexecbat
8. Реферат на тему Сведения о работе указываемые в трудовой книжке
9. Биография на тему Гегель Его жизнь и философская деятельность
10. Реферат Утоплення