Реферат

Реферат Будова електронних оболонок атомів елементів перших трьох періодів

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.1.2025


ПЛАН-КОНСПЕКТ УРОКУ З ХІМІЇ

На тему:

Будова електронних оболонок атомів елементів перших трьох періодів

Мета: Розкрити причину періодичної зміни властивостей елементів і їх сполук у світлі закономірної зміни будови електронних оболонок атомів. Розвивати пізнавальну активність школярів, вдосконалювати навики виконання самостійних робіт.

Формувати вміння учнів характеризувати хімічні властивості елементів за їх місцем в періодичній системі.

Наочні засоби навчання: Періодична таблиця, таблиця, картки з індивідуальними завданнями, перфокарти, ребуси, кросворди, схеми, картки для самостійної роботи.

Тип уроку: Комбінований.

План уроку

І. Вступ (вчитель).

ІІ. Контроль і корекція знань.

  1. Робота з індивідуальними картками (для слабо відстаючих учнів).

Картка № 1

Визначити кількість електронів у елементів № 6,7,8.

Картка № 2

Визначити число променів і нейтронів у хімічних елементів № 3,4,5.

ІІІ. Актуалізація опорних знань.

Фронтальна бесіда.

Вчитель – що таке атом?

  • яка будова його?

  • ск. видів атомів вам відомо?

  • чим відрізняються атоми різних елементів?

  • чому атоми електронейтральні?

  • з чим співпадає в атомі порядковий номер?

ІV. Вивчення нового матеріалу.

    • Видатний датський учений Нільс Бор розробив початкову квантову теорію будови атома. Цей учений фізик працював в лабораторії Резерфорда з 1911 року, а згодом очолив (1916 р.) Інститут теоретичної фізики Копенгагенського університету.

Йому належать праці щодо теоретичного пояснення періодичного закону Д.І. Мендєлєєва і по теорії атомного ядра. За ці заслуги в 1992 році Нільс Бор був нагороджений Нобелівською премією.

    • У своїх положеннях Бор зробив висновок, що енергія електронів у атомі змінюється не безперервно, а стрибками – дискретно. Тому в атомі можливі не будь-які енергетичні стани електронів, а лише визначені тобто квантові. Перехід із одного стану в інший відбувається стрибкоподібно і супроводжується виділенням або поглинанням енергії.

    • Основні положення своєї теорії Бор сформулював так:

  1. Електрон може обертатися навколо ядра не будь-як, а лише по строго визначеним орбітам. Ці орбіти Бор назвав стаціонарними.

  2. Рухаючись по стаціонарним орбітам електрон не випромінює енергію.

  3. Випромінювання енергії відбувається при стрибкоподібному переході електрона з однієї орбіти на другу.

  4. Енергія цього випромінювання дорівнює різниці енергії атома в кінцевому і вихідному станах.

    • В 1924 році французький фізик де Брайль передбачив, що електрон як і фотон має проявляти хвильові властивості. Цю енергію було підтверджено експериментальними дослідженнями у 1924 році Де вісоном і Джермаром в США, Том соном в Англії і Татарковським в Росії незалежно один від одного. Дослідження показали, що електрон поводить себе як хвиля з різним запалом енергії.

    • Ми знаємо, що загальне число електронів в атомі відповідає протонному числу, тобто порядковому номеру елемента і утворює його електронну оболонку.

    • Електрони цієї оболонки мають різний запас енергії тому одні сильніше притягуються до ядра і розміщені ближче до нього, а інші – слабкіше і розміщені дальше від ядра. Ось чому електрони розмішені навколо ядра шарами.

    • Кожний електронний шар складається з певної кількості орбіта лей відповідної форми. Будова електронних шарів (Таблиця)

S

І



P

ІІ







L

ІІІ













F

ІІІ





















Висновок: Електрони заповнюють ел. шари у порядку послаблення прийняття їх до ядра, на кожній орбіта лі є не більше 2-х електронів і електрони заповнюють орбіта лі по одному, а потім по два (пара).

Вч. – Розглянемо як будуються електроні шари атомів хім. елементів у порядку зростання зарядів їхніх ядер.

Мета: Розглянути електронну будову атома Н. Не.


1 S 1


Номер електронного

шару Число електронів

Форма орбіталі

Висновок: Оскільки на І електронному шарі може перебувати лише два електрони то перший шар в атомі Гелію завершений.

Мета: Розглянути порядок заповнення електронних шарів ІІ періоду.

Робота з підручником.

(Учні записують в своїх зошитах будову атомів елементів ІІ періоду).

    • Який ви бачите зв’язок між номером періоду і кількістю електронних шарів.

Висновок: Номер періоду вказує на кількість електронних шарів.

Мета: Встановити причини валентності.

(За період визначаємо кількість зовнішніх валентних електронів в атома).

Висновок: Інертні гази хімічно пасивні бо мають максимальну кількість електронів на зовнішньому ел.шарі.

    • Валентність за киснем і воднем

за Оксигеном – це кількість електронів, що міститься на зовнішньому електронному шарі.

За Гідрогеном – це кількість електронів, що не вистачає до завершення.

Висновок: Отже елементи мають валентність за Оксигеном і Гідрогеном.

V. Вправи на закріплення.

(робота з перфокартами)

Завдання 1

    • Що спільного у будові атомів Ве і Мд:

Число протонів;

Число електронів;

Число нейтронів;

Число валетних електронів.

Завдання 2.

    • Скільки електронів у зовнішньому шарі атома фосфору.

а) 2; б) 4; в) 5; г) 6.

Завдання 3

    • Яке максимальне число електронів на р-орбітале.

    • а) 2; б) 4; в) 6; г) 8.

Завдання 4

    • Які елементи мають завершені зовнішні електронні шари?

а) Н; б) Не; в) Li; г) Ne.

VІ. Домашнє завдання.

§ 7 вш – 41-45. стор. – 39.

Оксиген і Сульфур

1. Яка електронна формула атома Оксигену?

a) 1s22s226; б) Is22s22p5; в) 1s22s22p4; r) 1s22s22p63s23p4.

  1. Якщо атом Сульфуру перебуває у збудженому стані, то електрони третього шару можуть розміщуватися на:

а) р і d орбіталях; б) s, р і d орбіталях;

в) s.i d орбіталях; г) s, р і f орбіталях.

3. У якій сполуці ступінь окислення Оксигену +2?

a)Na2O2; б)Н2О; в)А12О3; r)OF2.

4. Які прості речовини містять лише атоми Оксигену?

а) вода кисень; б) озон, повітря; в) озон, кисень; г)озон, азот

5. Яка алотрогіна модифікація сірки нестійка за нормальних умов?"

а) ромбічна; б) моноклітинна; в) пластична; г) інша відповідь.

  1. Якщо всипати порошок міді у розплавлену сірку, то утвориться:

а) купрум (І) сульфід; б) купрум (II) сульфід;

в) купрум (II) сульфіт; г) купрум (П) сульфат.

7. Які властивості мають оксиди Сульфуру?

а) основні; б) кислотні; в) амфотерні; г) інша відповідь.

8. Як називаються кислі солі сульфатної кислоти?

а) сульфіти; б) гідрогенсульфіди; в) гідрогенсульфати; г) гідрогенсульфіти.

Нітроген і Фосфор

  1. Скільки неспарених електронів міститься в атомі Нітрогену?

  2. а)1; 6)2; в) 3; г)4.

2. Відмінність електронної будови атомів Фосфору і Нітрогену полягає в тому, що:

а) в атомі Фосфору є чотири електронні шари, а в атомі Нітрогену — один;

б) в атомі Фосфору на зовнішньому електронному шарі є вільні р-орбіталі, а в атомі Нітрогену вільних р-орбіталей немає;

в) в атомі Фосфору на зовнішньому електронному шарі є вільні rf-орбіталі, а в атомі Нітрогену вільних орбіталей немає;

г) в атомі Фосфору на зовнішньому електронному шарі є 5 електронів, а в

атомі Нітрогену — 3 електрони.

3. У якій молекулі ступінь окиснення Нітрогену має нульове значення?

a)N2O5; 6)NH3; u)N2; r)NO.

4. Вкажіть кількість електронних пар, за допомогою яких об'єднуються атоми

Нітрогену в молекулі азоту:

а) одна; б) дві; в) три; г) чотири.

5. Реакція синтезу аміаку є:

а) необоротною, екзотермічною, каталітичною;

б) оборотною, екзотермічною, каталітичною;

в) оборотною, ендотермічною, некаталітичною;

г) необоротною, ендотермічною, некаталітичною.

  1. При хімічній взаємодії води, нітроген діоксиду і надлишку кисню утворюється:

a)HNO2; б)HNO3; B)HNO2iHNO3; г)HN3 і NO.

  1. Який метал взаємодіє з концентрованою HNO3 з виділенням МО2?

а)Аl; б)Са; в)Сu; r)Na.

8. Яка формула амоній нітрату?

a)NH4NO2; б)A1(NO3)3; в) N4 NO3; r)NH3NO3.

Карбон і Силіцій

1. Що є спільного в електронній будові атомів Карбону і Силіцію?

а) кількість електронних шарів;

б) кількість d-орбіталей;

в) кількість електронів на зовнішньому електронному шарі;

г) кількість р- і d-орбіталей.

2. Які алотропні форми Карбону зустрічаються у природі?

а) алмаз, графіт і силікат; б) графіт, карбін і силікат;

в) графіт, алмаз і карбін; г) алмаз, карбін і карбід.

3.Який ступінь окиснення атома Карбону в молекулі СО2?

а) +2; б) 44; в) -2; . г) 0.

4. Поташ — це тривіальна назва:

а) калій гідрогенкарбонату; б) калій карбонату;

в) кальцій карбонату; г) кальцій гідрогенкарбонату.

5. У якій сполуці ступінь окиснення атома Силіцію -4?

a)SiO2; 6)H2SiO3; в)Мg2S1; г)CaSiO3.

6.Яка речовина є дуже отруйною тому, що блокує здатність гемоглобіну зв'язувати кисень?

a) CO; б)СО2; в)СН4; г)SiH4.

7.Яку речовину не можна використати для добування карбон (IV) оксиду в одну стадію?

а)СаСО3; б)Na2CO3; в)КНСО3; г) SiC.

  1. Яка сіль є кислою?

  2. a)NaHSiO3; б)CaCO3; в)BaSiO3; г) MgCO3/

Метан та його гомологи.

Теорія хімічних органічних речовин

1.У молекулі метану атом Карбону утворює:

а) три ковалентні зв'язки з атомами Гідрогену;

б) два ковалентні зв'язки з атомами Гідрогену;

в) чотири ковалентні зв'язки з атомами Гідрогену:

г) два ковалентні зв'язки з атомами Гідрогену і два з атомами Хлору.

2. Яка речовина не реагує з метаном?

а)С12; б)О2; в)НС1; г)Вг2.

3. За якої умови метан реагує з хлором?

а) за наявності каталізатора;

б) при нагріванні до 100°С;

в) при освітленні ультрафіолетовим промінням;

г) при тиску 10 мПа;

4. Яка речовина є хлоропохідною метану?

а)С3Н6С13; б)СН3С1; в)С2Н4С12; .r)CH2F2.

5. Молекула метану має форму:

а) піраміди; б) тетраедра; в) трикутника; г) октаедра.

6. Гомологи — це сполуки, що:

а) мають подібну будову молекул і різні хімічні властивості;

б) мають подібну будову молекул і подібні хімічні властивості, але відрізня­ються між собою за складом на одну чи кілька груп СН2;

в) відрізняються між собою на кілька груп СН2 і мають однаковий якісний і кількісний склад;

г) містять однакову кількість атомів Карбону і Гідрогену.

7. Етил — це:

а) насичений вуглеводень складу С2Н«;

б) одновалентний радикал складу С2Н5;

в) насичений вуглеводень складу C3Hg;

г) одновалентний радикал складу СН3.

8. Яка формула пропану?

a) CН4; б)С2Н2; в)С3Н8; г)С4Н10.

Ненасичені вуглеводні

1. Яка речовина належить до ненасичених вуглеводнів?

а)С5 Н12; б)С3 Н8; в)С2 Н6; г)С2 Н4

2. Вкажіть формулу найближчого гомолога ацетилену:

а)С4 Н8; б)С2 Н4; в) С3 Н4; г)С3 Н6.

3. У якій речовині є кратні зв'язки?

а) метан; б) пропан; в) ацетилен; г) бутан.

4. Яка структурна формула ацетилену?

Н

а) Н — С = С — Н; б) Н — С—С=С—Н;

Н Н Н

в)Н—С=С—Н; г)Н…С::С…Н.

  1. Який тип реакцій характерний для ненасичених вуглеводнів?

а) реакції заміщення; б) реакції приєднання;

в) реакції обміну; г) реакції розкладу.

6. У промисловості ацетилен добувають:

а) термічним розкладанням бутану; б) розкладанням метану при 1500°С;

в) розкладанням метану при 600°С; г) термічним розкладанням пропану.

7. Етилен можна одержати:

а) при взаємодії ненасичених вуглеводнів з водою;

б) при термічному розщепленні насичених вуглеводнів;

в) при взаємодії етану з хлором;

г) при взаємодії ацетилену з водою.

Полімери. Бензен. Природні джерела вуглеводнів

1. Полімеризація — це:

а) процес послідовного сполучення молекул низькомолекулярної речовини з утворенням високомолекулярної;

б) процес послідовного почергового сполучення молекул насиченого і нена-сиченого вуглеводнів;

в) процес розриву кратних зв'язків;

г) процес приєднання молекул водню до низькомолекулярних речовин.

2. Мономерною ланкою поліпропілену є:

а) — СН2 — СН — СН2 —; б) — СН2 — СН—;

СН3 СН3

СН3 СН3

в) —СН2—СН—СН2 г)—СН2—СН —СН2—.

СН3

3. Реакція полімеризації належить до реакцій:

а) обміну; б) приєднання; в) заміщення; г) розкладу.

4. Яка формула не є формулою бензену?

5. Яка формула хлоробензену?

а) C6H4Cl; б) C6H7Cl; в)С6 Н5Сl; г)С7 Н3Сl3.

6. Бензен не взаємодіє із:

а) бромом при освітленні ультрафіолетовим промінням;

б) бромною водою і .розчином калій перманганату;

в) воднем; г) нітратною кислотою.

7. Який мономер використовується для добування поліетилену?

а) пропілен; б) етилен; в) бутилен; г) метан.

Д.І. Менделєєва

Я не вірю, що Єдність

Тільки душ окремих сума,

В.І. Сумійленко.

Думи буття”


До відкриття періодичного за­кону Д. І. Менделєєвим у хімії панувало повне безлад­дя. Хіміки блукали в пітьмі; від­криття вони робили, покладаючись виключно на свої інтуїцію та експериментальний хист... Не було в них тоді ні «хімічного компаса», ні «хімічної карти», які допома­гали б їм безпомилково вибирати правильний шлях у вивченні ре­човин, їх властивостей й перетво­рень.

Проте слід зауважити, що свій величний І чудовий храм-елементарій російський хімік зводив не на голому місці. Були і в нього славні попередники — Й. Деберейнер, А. де Шанкуртуа, Д. Ньюлендс, Л. Мейєр. Усі вони намагалися по-своєму класифікувати хі­мічні елементи, відшукати зако­ни взаємозв'язку між ними. Так з'явилися на світ відомі «тріади Деберейнера», «октави Ньюлендса», «спіраль де Шанкуртуа» і таб­лиця Л. Мейєра. Але це були лише перші спроби, перші намагання... Класифікації були недосконалими і неповними, вони охоплювали далеко не всі елементи. Поперед­ники Д. І. Менделєєва не зуміли відкрити і збагнути найголовнішо­го, найістотнішого... внутрішньо­го, генетичного взаємозв'язку між усіма хімічними елементами.

На початку 1869 р. Менделєєв приступив до роботи над другим випуском «Основ хімії». Він зі­брав величезний літературний ма­теріал про 63 хімічні елементи, відомі на той час, та їх сполуки, вивчив безліч праць вітчизняних і зарубіжних учених. Дмитро Івано­вич ясно бачив, що назріла необ­хідність об'єднати розрізнені, розпорошені хімічні знання в єдину струнку систему Так, у результаті копіткої праці та завдяки світло­му природному розуму Д І. Менделєєва з'явилося одне з найвидатніших відкриттів XIX століття — періодичний закон та періодична система хімічних елементів... Проте геніальне відкритий було визнане не відразу.

У 1871 р., спираючись на пері­одичний закон, Д. І. Менделєєв зробив свої знамениті передбачення про існування і властивості ще невідомих науці елементів, зокре­ма аналогів бору, алюмінію, си­ліцію, які він назвав відповідно «екабором», «екаалюмінієм», «екасиліцієм». Справжній тріумф періодичного закону прийшов лише через кілька років.

Наприкінці 1875 р. француз П. Лекок де Буабодран за допомо­гою спектроскопа виявив у піре­нейській цинковій обманці новий елемент — галій. Але, як зазначив автор: «Винятково мала кількість речовини, що нею я володів, не дала змоги мені відокремити нове тіло від надлишку цинку, що є його супутником.

Геніальність Менделєєва, сміливість його думок можна вбача­ти і в тому, що він на основі лише хімічних властивостей виправив атомні маси принаймні 14 хіміч­них елементів, зокрема берилію, титану, хрому, ітрію, індію, цезію, лантану, церію, ербію, іридію, платини, ауруму, торію й урану.

До створення періодичної сис­теми елементів загадками були атомна маса берилію та склад його оксиду. Хіміки вважали берилій тривалентним з атомною масою 13,5 тільки на тій підставі, що со-лодкозем (ВеО) за хімічними влас­тивостями дуже нагадує глинозем (А12О3). Щоправда, російський хі­мік І. В. Авдєєв на основі найретельніших аналізів довів, що «со­лодкій землі» відповідає формула ВеО, а не Ве2О3, як було прийня­то в ті часи. Хибна думка про три­валентний берилій з атомною ма­сою 13,5 суперечила періодично­му закону, і тому для металу «со­лодкої землі» не було місця в пе­ріодичній системі. Менделєєв «по­селив» берилій у 2-й групі і II пе­ріоді, вважаючи, що його атомна маса 9,4. Проти цього «свавільст­ва» рішуче виступили шведські хі­міки Л. Нільсон і О. Петерсон. Та коли вони визначили густину пари хлориду берилію, їх здивуванню не було меж. Виявилося, що атомна маса берилію становить 9,1 і що цей метал двовалентний, як і пе­редбачав російський хімік.

Коли Менделєєв створював періодичну систему, всі хіміки приписували урану атомну ма­су 120. Для такого «розрубаного навпіл» урану теж не знаходилося місця в менделєєвській таблиці. Тому в 1869 р. Дмитро Іванович, спираючись на відкритий ним за­кон, сміливо подвоїв атомну масу урану. Цей елемент став крайнім і найважчим на той час «мешкан­цем» елементарію з атомною ма­сою 240. Через 13 років німецький хімік Г. Ціммерман блискуче під­твердив цю думку російського вче­ного. Він експериментальне ви­значив густину пари хлориду ура­ну ОСЬ і розрахував атомну масу урану. Вона дорівнювала... 240.

Буабодрана, Нільсона, Вінклера, Ціммермана і Браунера Мен­делєєв справедливо назвав «зміцнювачами» періодичного закону Чеський хімік Б. Браунер був удос­тоєний такого почесного «титулу» за дослідження рідкісноземельних елементів. Цей учений уперше розв'язав питання щодо розмі­щення чималої «сімейки» «братів-лантаноїців» у менделєєвському елементарії. Він один з перших підтримав ідею розміщення ново­відкритих інертних (благородних) газів у так званій нульовій групі. Ним багато також зроблено для популяризації, поширення й ви­знання ідей російського хіміка Менделєєва в ученому світі.

Та все ж найголовніше, найіс­тотніше в періодичному законі лишалося тоді ще не з'ясованим. «Ми не розуміємо причини періо­дичного закону», — визнавав сам творець його. Але на рубежі XIX і XX століть, ще за життя Д. І. Менделєєва, розкриття таємниць будо­ви атома й атомного ядра поста­вило періодичний закон на міцні теоретичні підвалини. риявилося, що індивідуальність, а водночас і періодичність властивостей еле­ментів визначаються зарядами ядер та електронною будовою ато­мів.

Періодичний закон і періодична система хімічних елементів допомогли подружжю Кюрі. Е. Резерфорду, Ф. Содді, К. Фаян­су, А. Деб'єрну, О. Гану, Л. Мейтнер та іншим розібратися у не­трях хитромудрих ланцюжків ра­діоактивного розпаду в родинах урану — радію, актиноурану, то­рію, а пізніше нептунію — плуто­нію. Дітище Менделєєва стало до­роговказом й у відкритті штучної (наведеної) радіоактивності, лан­цюгової реакції поділу ядер ура­ну, і в передбаченні методів ядер­ного синтезу та властивостей ще невідомих хімічних елементів.

ПРО ЗАБРУДНЕННЯ

ХАРЧОВИХ ПРОДУКТІВ

МЕТАЛАМИ І НЕМЕТАЛАМИ

Навіть невеликий вміст мік­роелементів часто спричи­няє зміну звичного кольо­ру харчових продуктів за раху­нок комплексоутворення між іонами металів і рослинними пігіентами, що є в складі їжі. Так, вишні чорніють від контакту з мідним посудом, те саме спо­стерігається, якщо яблучний сік зберігати в залізній тарі, над­мірна кількість алюмінію або олова також спричиняє потем­ніння багатьох продуктів.

Сліди мікроелементів у складі жирів діють як каталізатори їх окиснення, внаслідок чого жири гіркнуть, особливо якщо до їх складу входять залишки ненасичених жирних кислот.

Одним із основних джерел забруднення харчових продук­тів є сама вихідна сировина, яка може не відповідати необхідним вимогам щодо вмісту в ній хі­мічних елементів.

Переважна більшість рослин, о дають сировину для харчо­вих підприємств, поглинають хімічні елементи в обмеженій кількості, проте є групи рослин, які спроможні накопичувати певні елементи в дуже великих кількостях. Прикладом може бути накопичення цинку в лист­ках подорожника, плюмбуму — в рослинах придорожніх лісових смуг, селену — в бобах. Є ро­слини, яким підвищений вміст у грунті певних хімічних еле­ментів навіть «подобається». Такі рослини слугують природ­ними індикаторами на купрум, уран, кобальт, аурум або аргентум і допомагають геологам у пошуках корисних копалин. Але підвищений вміст шкідливих елементів у рослинах і організ­мах тварин може сприяти їх переходу до складу харчових про­дуктів. Так, кадмій відкладається у зернах рису внаслідок вико­ристання для зрошення промис­лових стічних вод електролітич­них виробництв. Ще в 50-х ро­ках в Японії був випадок, коли понад 50 чоловік загинули від вживання зерен рису з підви­щеним вмістом кадмію. Зерна пшениці, подібно до рису, аку­мулюють цинк і плюмбум, тому за недотримання певних вимог борошно може бути забруднене цими металами.

Планктон і риба також легко поглинають з морської води ар­сен, меркурій, плюмбум, кадмій і при необережному використан­ні можуть бути джерелом забруд­нення харчових продуктів.

У наш час обсяг відходів життєдіяльності людини досить значний і з кожним роком зрос­тає. Основну масу твердих від­ходів закопують у котловани, що утворені внаслідок добуван­ня вапняку, глини, піску або гра­вію. Велика частина відходів переробляється на мул стічних вод і міський компост, які по­тім застосовуються як ґрунтові добрива.

Технологія переробки стічних вод на добрива за певної еконо­мічної вигоди приховує в собі небезпеку забруднення ґрунтів насамперед купрумом, ферумом, манганом і, що особливо небез­печно, цинком, плюмбумом і меркурієм. Вміст цинку в стіч­ному мулі може бути в 300 разів більший, а купруму і бору — в 100 разів більший, ніж у при­родних ґрунтах. Названі метали важко вилучаються з ґрунту і впливають на хімічний склад урожаїв протягом багатьох ро­ків, хоч не всі вони однаково поглинаються рослинами. Най­більше рослини накопичують бор, плюмбум, кадмій та мер­курій, незначною мірою — цинк і купрум.

Хімічні добрива, особливо фосфорні, можуть виступати джерелом токсичних металів, якщо їх вміст у добривах під­вищений. Звичайна пшениця легко вбирає у свої зерна кад­мій, якщо вміст останнього у ґрунті значний.

Сільськогосподарські хіміка­ти — фунгіциди, інсектициди і гербіциди — мають у своєму складі мідь, меркурій, арсен, плюмбум. їх використовують для обробки овочів і фруктів, звідки вони можуть потрапити до їжі або напоїв (соків, вина), а після вживання — до організ­му. Підвищений вміст арсену у м'ясі тварин може спричинити препарат ортоарсенатної кисло­ти, який використовують як сти­мулятор приросту маси тварин.

Потрапляє арсен до рослин і організму людини тому, що за своїми хімічними і кристалогра­фічними особливостями він подібний до фосфору і заміняє його в природних сполуках.

На превеликий жаль, упро­довж останніх століть людина виявилася невдячною природі і, спокусившись благами цивіліза­ції, нещадно експлуатувала і за­бруднювала її. Зокрема, це сто­сується й води, куди викидало­ся все — від побутового сміття до відходів металів. Брудна вода може спричинити серйозні ін­фекційні захворювання — ди-' зентерію, черевний тиф, холеру тощо, а також смертельні отру­єння людей після вживання риби з підвищеним вмістом ток­сичних елементів.

ЦІКАВО ПРО ВІДОМЕ

В Україні така небезпека іс­нує поблизу міст, де розвинуті хімічна, електрохімічна, мета­лургійна, радіотехнічна, гальва­нічна промисловість, а поряд є річки або моря. Це — Черкаси, Кременчук, Дніпропетровськ, Запоріжжя, Кривий Ріг, Одеса, Севастополь, Хмельницький, Вінниця і деякі інші.

Вихідна харчова сировина в більшості випадків потребує тех­нологічної обробки. Якщо про­цеси миття і очищення від час­тинок землі відбуваються неякісно або сировина контактує з металами протягом значного часу, то цим самим створюють­ся умови для її забруднення ме­талами. До готового продукту метал може переходити з тари, якщо в хімічному відношенні вона нестійка до того продукту, який у ній зберігається. Таким чином, як обладнання, так і тара може бути джерелом хімічного забруднення.

Відомий випадок отруєння дітей дитячого садка домашнім м'яким сиром, який зберігався в оцинкованому відрі. Сироват­ка сиру з великим вмістом мо­лочної кислоти прореагувала з цинком, внаслідок чого утвори­лася токсична сполука цинку, яка забруднила продукт, що й призвело до нещасного випад­ку. Стародавні римляни полюб­ляли вживати добре вино, яке зберігалося у полив'яних глеках. Оскільки до складу поливи (гла­зурі) входив оксид плюмбуму, то останній легко переходив до вина у вигляді розчинних комплексів. Вживання такого вина спричиняло хронічні отруєння плюмбумом. Медики вважають, що чудернацькі вчинки римсь­ких імператорів були наслідком їхнього хворобливого стану від отруєння цим металом. В Юго­славії траплялися випадки отру­єння людей плюмбумом з мас­лин, які зберігалися у свинце­вому посуді.

У сучасному побуті деколи використовують луджений по­суд — це мідний посуд, покри­тий тонким шаром олова. Оскільки олово має домішку свин­цю, то він разом з міддю легко переходить до їжі, якщо вона має хоч невеликий вміст орга­нічних кислот — яблучної, оц­тової, молочної і деяких інших. Зрозуміло, що варити борщ (а він має домішки органічних кис­лот) в лудженому посуді є спра­вою досить ризикованою.

Метали можуть потрапити до харчових продуктів також з полив'яного і емальованого посу­ду. Глиняний посуд лише тоді майже не забруднює харчові продукти, якщо він поливаний твердим, рівним і міцним ша­ром покриття. Металевий посуд, покритий яскраво-жовтими або червоними емалями, може бути джерелом появи в продуктах плюмбуму й кадмію, бо ці спо­луки металів є компонентами не­органічних пігментів.

Плюмбум і кадмій можуть потрапляти до харчових продук­тів з візерунків скляного посу­ду, паперових і поліетиленових обгорток і етикеток. Особливо небезпечні ті, що містять яскраві кольорові барви, до складу яких входять неорганічні фарби з вмістом плюмбуму і кадмію. Ві­домий факт, коли гумова жуйка була в привабливій обгортці, що містила 88 мг/кг плюмбуму. Тут і варто замислитись, чи настіль­ки вже необхідні Україні зару­біжні харчові продукти.

Пластмасові упаковки вияви­лись непоганими у використан­ні. Під час перевірки було ви­явлено, що з їх поверхні метали переходять до продуктів у ма­лих кількостях.

Харчові продукти можуть забруднюватися металами не лише через друкарські фарби, а й через харчові барвники. В ба­гатьох країнах світу такі барвники було вилучено з ужитку і за­боронено через підвищений вміст арсену, кадмію, хрому і плюмбуму.

Джерелом шкідливих елемен­тів на практиці може бути ме­талева тара або упаковка, в якій зберігають готові продук­ти. Консервні банки, виготовлені із залізної жерсті і луджені оловом, широко використову­ються для зберігання м'ясних, рибних і молочних продуктів. Надійність щодо відсутності за­бруднення може бути гаранто­вана в цьому випадку лише тоді, коли продукти містять малі кіль­кості органічних кислот, нітра­тів, окисників чи відновників, а температура зберігання досить низька. Захисником стінок металевих банок від дії агресив­них домішок їжі слугує харчо­вий лак, хоч є дані про те, що сам харчовий лак може бутив джерелом плюмбуму і спричинити забруднення.

Якщо зазначені умови пору­шено, то метал консервних ба­нок або тари може реагувати з продуктом. Така взаємодія час­тіше має характер електрохіміч­ної корозії: більш активний ме­тал слугує анодом у гальваніч­ній парі двох металів, а менш активний метал — катодом. Як приклад розглянемо корозію за­лізної жерсті, покритої оловом. Якщо захисне покриття поруше­не (удар, подряпина, агресивна дія хімічної домішки), то два метали тари — залізо і олово — вступлять у контакт з харчовим продуктом. У кислому середо­вищі одночасно ідуть процеси:

Гази, які можуть утворюватися у продуктах консервних банок, у тому числі й водень, призводить до їх здуття. Такі консерви вважаються непридатними для харчування, бо можуть спричинити харчові отруєння.

Набагато кращим матеріали слугують хімічно стійкі нержавіючі сталі, з яких домішки міді, нікелю і хрому дуже повільно і в малих кількостях переходять до харчових продуктів. Посуд з нержавіючої сталі не відновлює нітрати харчових продуктів до нітритів. Через що має вагому перевагу над алюмінієвим. До металів, непридатних для контакту з їжею, належать кадмій, нікель, мідь, цинк і берилій. А застосування сплавів берилію заборонено на підприємствах харчової промисловості через його високу токсичність.

З ЖИТТЯ ХІМІЧНИХ ЕЛЕМЕНТІВ

(Казка)

Поблизу великого Бору на Фермій жив кіт на ім'я Лютецій. Яка це була країна — невідомо. Може, Індій чи Германій, а може, Америцій, а то й Францій.

Кіт був не простий, а чарів­ний. Він був надзвичайно Ак­тиній і рухливий, як Меркурій. Очі кота світилися, як Фосфор, а сам він уночі ставав Неодим. Шубка в нього Сірка з двома біленькими плямами на Талій.

На цій Фермій крім котика Лютеція мешкали ще маленька дівчинка Галій та її мама Іри­дій. Лютецій був завжди Радій бачити Галій. Вона часто Бери­лій котика на руки і бавилася з ним. Котик інколи захоплював мишку у Полоній, і то був ве­ликий Цирконій, коли мишка тікала з Полоній і Молібден бога за свій порятунок.

Наближався день народжен­ня Галій, і вона Гадоліній про свої подарунки.

Приїхали гості з Європій, Америцій, Рутеній: Ванадій та Арсен із Тулій, Родій з Калі­форній, Нікол із Самарій.

А найкращим подарунком ви­явився маленький песик Ко­бальт. На шиї в нього виблис­кував сріблястий Силіцій.

Мама Іридій діставала з Барію гостинці й частувала гостей.

Свято було веселим та радіс­ним і тривало, аж поки Гелій сіло за обрій, а на небі з'явився Селен. Між Лютецієм і Кобаль­том ледве не дійшло до неве­личкого Скандію. Але котик був у стосунках великий Технецій і залагодив їх, Ніобій нічого й не сталося.

І собачка завжди зустрічав котика веселим — Гафній, Гаф­ній!


1. Сочинение на тему Распутин b. - Роль антитезы в одном из произведений русской литературы xx века.
2. Реферат Домашние и офисные сети Home Lan - стандарты и оборудование Home lan и интеллектуальный дом
3. Контрольная_работа на тему Группировка затрат
4. Реферат на тему Untitled Essay Research Paper The Christmas season
5. Реферат на тему The Old Man And The Sea Essay
6. Курсовая Основные теории международной торговли 5
7. Реферат на тему Australian History 2
8. Биография Порошин, Семен Андреевич
9. Биография Беркли, Джордж
10. Реферат на тему Hair Trends Essay Research Paper Different hairstyles