Реферат

Реферат Лінійний векторний простір

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


РЕФЕРАТ

на тему:

Лінійний векторний простір”

Векторний простір (лінійний простір) - безліч елементів, які називаються векторами, для яких визначені операції додавання і множення на число. Найпростіший, але важливий приклад - сукупність векторів a, b, c, ... звичайного 3-мірного простору. Кожен такий вектор - спрямований відрізок, що задається трьома числами: ; числа називаються координатами вектора.

При множенні вектора на речове число відповідний відрізок, зберігаючи напрямок, розтягується в раз: . Сума двох векторів знаходиться за правилу параллелограмма; якщо і те .

Парі векторів a і b зіставляють також скалярний добуток (скалярним опосередкованим узагальненням З-мірного простору є n-мірний евклідовий простір.

Його елементи - упорядковані набори речовинних чисел, Наприклад, , . Додавання і множення векторів на число визначені формулами , , а скалярний добуток - формулою Прикладом комплексного безкінечномірного векторного простору може служити сукупність комплексних функцій f, заданих на всій осі і квадратично сумованих (тобто маючих кінцевий інтеграл ). Багато класів функцій, наприклад, поліноми заданого порядку, функції безупинні, диференційовані, що інтегруються, аналітичні і тому подібні, також утворять безкінечномірні векторні простори.

У кожнім векторному просторі, крім операцій додавання і множення на число, звичайно маються ті чи інші додаткові операції і структури (наприклад, визначений скалярний добуток). Якщо ж не уточнюють природи елементів векторного простору і не припускають у ньому ніяких додаткових властивостей, то векторний простір називають абстрактним. Абстрактний векторний простір L задають за допомогою наступних аксіом:

  1. будь-якій парі елементів х и у з L зіставлений єдиний елемент z, називаний їхньою сумою z=x+y і приналежний L;

  2. для будь-якого числа і будь-якого елемента x з L визначений елемент z, що називається їхнім добутком і приналежний L;

  3. операції додавання і множення на число є асоціативними і дистрибутивними.

Додавання допускає зворотну операцію, тобто для будь-яких х и у з L існує єдиний елемент w з L такий, що x+w=y. Крім того, мають місце формули .

Якщо всі числа речовинні (комплексні), говорять про речовинний (комплексному) векторна просторі; безліч чисел називають полем скалярів L. Поняття векторного простору можна ввести і для довільного полючи, наприклад, полючи кватерніонів.

Якщо - елементи векторного простору L, то вираження виду називається їхньою лінійною комбінацією; сукупність усіх лінійних комбінацій елементів підмножини S з L називають лінійною оболонкою S. Вектори з L називають лінійно незалежними, якщо умова ( - будь-які елементи полючи скалярів) може виконуватися тільки при . Нескінченна система векторів називається лінійно незалежної, якщо будь-яка її кінцева частина є лінійно незалежної. Безліч елементів підмножини S з L називається системою утворюючих S, якщо будь-який вектор х з S можна представити у виді лінійної комбінації цих елементів. Лінійно незалежна система утворюючих S називається базисом S, якщо розкладання будь-якого елемента S по цій системі єдино.

Базис, елементи якого яким-небудь образом параметризовані, називається системою координат у S. Базис векторного простору завжди існує, хоча і не визначається однозначно. Якщо базис складається з кінцевого числа n елементів, то векторний простір називається n-мірним (конечномірні); якщо базис - нескінченна безліч, той векторний простір називається безкінечномірні. Виділяють також лічильномірні векторні простори, у яких мається рахунковий базис.

Підмножини векторного простору L, замкнуті щодо його операцій, називаються підпросторами L. По будь-якому підпросторі S можна побудувати новий векторний простір L/S, називане фактором-простором L по S: кожен його елемент є безліч векторів з L, що розрізняються між собою на елемент із S. Розмірність L/S називається коразмірністю підпростору S у L; якщо розмірності L і S рівні відповідно n і k, те коразмірність S у L дорівнює n-k. Якщо J - довільна безліч індексів i і Siсімейство підпросторів L, те сукупність усіх векторів, що належать кожному з Si, є підпростір, називається перетинанням зазначених підпросторів і що позначається . Для кінцевого сімейства підпросторів S1, ..., Ss сукупність усіх векторів, які представлені у виді

, xi з Si,

(*)

є підпростір, називаний сумою S1, ..., Ss і що позначається S1+ ... +Ss. Якщо для будь-якого елемента суми S1+ ... +Ss представлення у виді (*) єдино, ця сума називається прямої і позначається . Сума підпросторів є прямої тоді і тільки тоді, коли перетинання цих підпросторів складається тільки з нульового вектора. Розмірність суми підпросторів дорівнює сумі розмірностей цих підпросторів мінус розмірність їхнього перетинання. Векторний простір L1 і L2 називають ізоморфним і, якщо існує взаємно однозначна відповідність між їх елементами, погоджена з операціями в них; L1 і L2 ізоморфні тоді і тільки тоді, коли вони мають однакову розмірність.

Конкретні приклади векторного простору можна знайти в математичному апараті практично будь-якого розділу фізики. Кінцевомірними речовинними векторними просторами є, наприклад, трехмерное физическое пространство (без обліку кривизни), конфигурационное пространство і фазовое пространство системи n класичних крапкових часток. До числа безкінечномірних комплексних векторних просторів належать гильбертовы пространства, конкретну й абстрактну, складову основу математичного апарата квантової фізики. Найпростіший приклад гільбертова просторів уже згадуваний простір .

Основні фізичні приклади - простору векторів станів різних систем мікрочастинок, досліджуваних у квантовій механіці, квантовій статистичній фізиці і квантовій теорії поля. Знаходять застосування і такі векторні полючи, у яких поле скалярів не збігається з безліччю речовинних чи комплексних чисел: так, гільбертово простір над полем кватерніонів використовується й однієї з формулювань квантовой механики, а гільбертовий простір над полем октоніонов - в одній з формулювань квантової хромодинаміки. У сучасних теориях суперсимметрии інтенсивно застосовуються так називані градуйовані векторні полючи, тобто лінійні простори разом з їхнім фіксованим розкладанням у пряму нескінченну суму підпросторів.

Використана література:

  1. Векторний простір. – М., 1992.

  2. Вища математика в прикладах. – К., 1998.

  3. Математична енциклопедія. – М., 1983.

Ссылки (links):
  • http://phys.web.ru/db/search.html?not_mid=1179060&words=%EA%E2%E0%ED%F2%EE%E2%EE%E9%20%EC%E5%F5%E0%ED%E8%EA%E5
  • http://phys.web.ru/db/search.html?not_mid=1179060&words=%EA%E2%E0%ED%F2%EE%E2%EE%E9%20%F1%F2%E0%F2%E8%F1%F2%E8%F7%E5%F1%EA%EE%E9%20%F4%E8%E7%E8%EA%E5
  • http://phys.web.ru/db/search.html?not_mid=1179060&words=%EA%E2%E0%ED%F2%EE%E2%EE%E9%20%F2%E5%EE%F0%E8%E8%20%EF%EE%EB%FF
  • http://phys.web.ru/db/search.html?not_mid=1179060&words=%EA%E2%E0%ED%F2%EE%E2%EE%E9%20%EC%E5%F5%E0%ED%E8%EA%E8
  • http://phys.web.ru/db/search.html?not_mid=1179060&words=%EA%E2%E0%ED%F2%EE%E2%EE%E9%20%F5%F0%EE%EC%EE%E4%E8%ED%E0%EC%E8%EA%E8
  • http://phys.web.ru/db/search.html?not_mid=1179060&words=%F2%E5%EE%F0%E8%FF%F5%20%F1%F3%EF%E5%F0%F1%E8%EC%EC%E5%F2%F0%E8%E8

  • 1. Реферат Гаджи Челеби
    2. Реферат Побудова багатофункціонального комплексу
    3. Краткое содержание Андромаха Жан Расин
    4. Реферат Планирование и организация исследования системы управления
    5. Диплом Гражданско-правовые способы защиты вещных прав
    6. Реферат Спортивна гімнастика
    7. Реферат на тему The Good Earth Essay Research Paper Each
    8. Реферат на тему EngL 3851 Essay Research Paper Fall 1998Minnesota
    9. Книга на тему Предмет задачи и особенности психологии как науки
    10. Курсовая на тему Составление плана раскроя пиловочного сырья и расчет технологических потоков лесопильного цеха