Реферат

Реферат Інтегровані типи д-р 1-го порядку розвязаних відносно похідної

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024


Реферат на тему:

Інтегровані типи д-р 1-го порядку,

розвязаних відносно похідної.

а). Неповні р-ня. ДР, яке не містить шуканої функції.

Має вигляд

, (2.33)

Припустимо, що f(x) являється неперервною на функцією.

Тоді ф-я

(2.34)

являэться загальним розв`язком д-р (1) в області a < x < b, -< y < + .(2.35)

Особливих розвязків ДР (2.33) немає.

Разом з ДР (2.33) розглянемо початкові умови (2.36)

Проінтегруємо ДР (2.34) від до x

Знаходимо с з умови (2.36)

(2.37) - загальний розвязок ДР (2.33) в формі Коші.

Якщо f(x) - неперервна на за виключенням точки , в якій приймає нескінченне значення, то замість ДР (2.34) будемо розглядати р-ня

(2.331)

Пряма являється розвязком ДР (2.331) і ми цей розвязок повинні приєднати до розвязку ДР (2.33). Цей розвязок може бути частинним або особливим в залежності від того зберігається чи порушується в будь-якій його точці єдність. Якщо - частинний розвязок, то його часто можна отримати з загального при нескінченних заначеннях с, якщо ж він являється особливим, то його отримують з загального при .

Р-ня, яке не містить незалежної змінної має вигляд

(2.38)

Припускаємо, що ф-я визначена і неперевна на інтервалі . Замість (2.38) розглянемо ДР

(2.39)

ДР (2.39) не містить шуканої функції і воно розвязується аналогічно ДР (2.33).

Якщо , y є (c,d), то

(2.40) – загальний рохвязок ДР (2.39) в області

c < y < d, -< x < + .

Аналогічно (2.41) - загальний інтеграл в формі Коші.

Якщо неперервна на (c,d) і приймає нульове значення при , то ми повинні розглядаті ДР (2.38). Розвязок буде частинним, якщо в кожній його точці зберігається єдиність, і осоюливим, якщо в кожній його точці порушується єдиність. Якщо частинний розвязок, то ми його отримуємо при нескінченних значеннях , якщо особливий, то при .

Якщо в тоцчі перетворюється в нескінченність , то розглянемо ДР (2.39), яке має неперервну праву частину на (c,d). При цьому ДР на має єдиний розвязок .

Пр. 2.5

Розглянемо ДР .

Область визначення : .

Поскільки в т. дотичні паралельні осі OY, то розвязок в єдиний , .

б) Рівняння з відокремлюванними змінними.

Розглянемо р-ня в диференціалах виду

(2.42),

де - неперервні ф-ї своїх аргументів.

Деференціальне р-ня (2.42) називається р-ням з відокремленими змінними. Його можна переписати данним чином . Звідки маємо загальний розвязок в квадратурах. (2.43).

Якщо треба записати розвязок задачі Коші, то записують так . З умови (2.36) визначають . Отже (2.44) – розвязок задачі Коші (2.36), (2.42). При данних припущеннях особливих розвязків ДР (4.42) не має.

Рівняння вигляду

(2.45) –

називають р-ням з відокремлюваними змінними.

Припустимо, що , тоді розділемо обидві частини рівняння (2.45) на , отримуємо

(2.46).

Аналогічно записуємо

(2.47) –

загальний розвязок ДР (2.45) і

(2.48) –

розвязок задачі Коші (2.36) , (2.45). При діленні на ми можемо загубити розвязки, які визначаються рівняннями ,. Дійсно, нехай , то

отже - розвязок ДР (2.45).

Аналогічно .

Якщо ці розвязки не входять в (2,47) при деяких , то вони представляють собою особливі розвязки ДР (2.45).

З розвязку ми повинні викинути точку , так як в точці ДР (2.45) не визначає нахил поля . По тій же причині з розвязку викидають точку .

Таким чином розвязки і примикають до точки і можуть бути особливими. Других особливих розвязків не має.

Пр. 2.6.

Знайти загальний розвязок ДР:

.

Розвязок:

. .

.

.

.

.

в). Однорідні і узагальнено-однорідні ДР.

Розглянемо р-ня в диференціалах

(2.5),

в якому ф-ії і являються однорідними функціями одніеї і тієї ж степені однорідності.

Означення 2.4: ф-я називаеться однорідною степеню ,

якщо (2.49).

Якщо (2.49) виконуються при , то ф-я називаеться додатню-однорідною.

Однорідне р-ня завжди можна звести до рівняння вигляду

(2.50),

в якому функція однорідна функція нулбового виміру.

Однорідні рівняння завжди інтегруються в квадратурах заміною (2.51). При цьому р-ня (2.5) приводиться до рівняння з відокремлюваними змінними. Дійсно

,

,

,

,

,

,

(2.52), де .

При діленні ми могли загубити розвязок , де - корені рівняння (2.53).

Отже півпрямі примикають до початку координат. Ці розвязки можуть міститися в формулі загального розвязку, але можуть бути і особливими. Особливими можуть бути також півосі осі . Других особливих розвязків ДР (2.5) не має.

Рівняння вигляду(2.54) зводиться до однорідного. Якщо , то це однорідне рівняння.

Припустимо, що хоч одне з чисел не дорівнюють 0. Можливі два випадки:

Перший) Проводимо заміну (2.55), де - нові змінні, - параметри. Тоді (2.56).

Параметри вибираємо згідно системи (2.57). Так як то система (2.57) має єдиний розвязок. Таким чином, ми прийшли до однорідного ДР (2.58).

Другий) . В цьому випадку , тобто . Тому (2.59)

Заміною ДР (2.59) приводимо до рівняння з відокремленими змінними (2.60).

Пр 2.7 Знайти загальний розвязок ДР

Це однорідне рівняння, . Зробимо заміну ,

, .

Отже - загальний розвзок нашого рівняння.

ДР (2.5) називається узагальнено-однорідним, якщо існує таке число , при якому ліва частина цього ДР (2.5) стає однорідною функцією від велечин в припущенні, що __ мають віжповідно виміри: перший, -ий, нульвий , -ий. При має просто однорідне рівняння.

В цьому випадку ДР (2.5) заміною (2.61) зводитьчя до р-ня з відоктремлюванними змінними. При р-ня (2.5) являється р-ням з розділеними зміними. Особліви розвязки досліджуються аналогічно.

Пр 2.8 Розвязати ДР:

Знайдемо чило для данного випадку . Отже , ,формула

Звідки загальний розвязок.

г) Лінійні р-ня порядку.

ДР вигляду (2.62) називаються лінійними ДР порядку.

При воно називається однорідним

Формула (2.63). Так як ліва частина ліній на і однорідна відносно і . Р-ня (2.62) при називається неоднорідним. ДР (2.63) інтирується в квадратурах, так як воно являється ДР з відокремлюваними змінними.. Звідки (2.64).

Якщо то (2.65)

Загальні властивості ОДР :

  • Якщо та неперервні, то згідно теореми Пікара розвязок задачі Коші для ДР (2.63) існує і являється єдиним;

  • ЛДР (2.63) не має особливих розвязків;

  • ІК ОДР (2.63) не можуть пееретинати вісь , так як в противному випадку нарушалися б умови єдиності розвязку задачі Коші;

  • ДР (2.63) інваріантно відносно перетворення ;

Дійсно: формула , .

  • ДР (2.63) іваріантно відносно заміни (2.66) де -новазмінна, та - неперервні ф-ї, на . Тоді . Якщо - частинний розвязок ДР (2.63), то (2.67), де - константа, являється загальним його розвязком. Справедлива теорема.

Теорема (2.3) (про структуру розвязку лінійного неоднорідного ДР): Якщо - частинний розвязок неоднорідного ДР (2.62), а ДР (2.64)- загальний розвязок ОДР (2.63) то сума (2.68) являється загальним розвязком неоднорідного ДР (2.62).

Теорема доводиться безпосередньою подстановкою (2.68) в

р-ня (2.62).

Якщо відомо два частинних розвязки ДР (2.62), то загальний його розвязок записується без квадратур (2.69).

Розглянемо два методи интигрування неоднорідного ДР (2.67).

Метод Лагранжа (варіації довільної сталої).

Розвязок шукаємо у вигдяді (2.70). Підставимо (2.70) в (2.62). . Звідки ,

. Остаточно маємо (2.71).

загальний розвязок ДР (2.62), який записаний через дві квадратури. Довільна стала входить завжди в загальний розвязок лінійно.

Метод Ейлера заключається в тому, що ліва частина ДР (2.62) представляється у вигляді точної похідної шляхом домноження на деяку функцію Визначимо звідки тобто (ф-я) називається інтерувальним множником). Тому (2.72) звідки. З останнього співвідношення отримуємо ф-лу (2.71).

Загальний розвязок при умові можна записати в Формі Коші .

Пр.2.9 Знайти загальний розвязок ДР

Це лінійне однорідне ДР .

Пр.2.10 Розвязати ДР .

За формулою (2.71)

д) Рівняння Бернуллі Це рівняння має вигляд (2.74)

Рівняння (2.74) завжди інтегрується в квадратурах шляхом підстановки (2.75). Так як , то домножимо (2.74) на , маємо (2.76) яке вже являється лінійним.

При рівняння Бернуллі має особливий розвязок. При розвязок міститься в загальному розвязку при. При не являється розвязком ДР (2.74)

Пр.2.11 Розвязати ДР , , ,. Отже - загальний розвязок нашого р-ня.

Відомо, що деференц. – ліннійне р-ня.

Р-ня зводиться до лінійного заміною.


1. Реферат на тему Комплекс физических упражнений при вертебробазилярной недостачности
2. Реферат Понятие о природной среде, средах жизни
3. Реферат на тему 1982 Essay Research Paper OutlineThesis Statement This
4. Контрольная работа Основные типы складских издержек
5. Контрольная работа на тему Мода первой половины XIX века и е отражение в произведениях А С Пушкин
6. Курсовая на тему Кредитно-денежная политика 2
7. Реферат Иммануил Кант проблемы бытия и познания
8. Диплом Эволюционный процесс развития теорий управления в ХХ веке
9. Реферат на тему Древнегреческий костюм Его влияние на костюмы последующих эпох
10. Шпаргалка Шпаргалки по Концепции современного естествознания