Реферат

Реферат Алгебра матриц

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


Алгебра матриц

Основные понятия

Определение. Прямоугольная таблица из m строк и n столбцов, заполненная некоторыми математическими объектами, называется – матрицей.

Мы будем рассматривать числовые матрицы. Числа, составляющие матрицу, называются ее элементами. Для обозначения матрицы, как правило, используются круглые скобки. При записи, в общем виде элементы матрицы обозначаются одной буквой с двумя индексами, из которых первый указывает номер строки, а второй – номер столбца матрицы. Например, матрица


В сокращенной записи: А=(аij); где аij - действительные числа, i=1,2,…m;

j=1,2,…,n (кратко , . ). Произведение называют размером матрицы.

Матрица называется квадратной порядка n, если число ее строк равно числу столбцов и равно n:

Упорядоченный набор элементов а1122,…,аnn называется главной диагональю, в свою очередь, а1n2,n-1,…,аn1 – побочной диагональю матрицы. Квадратная матрица, элементы которой удовлетворяют условию:

называется диагональной, т.е. диагональная матрица имеет вид:

Диагональная матрица порядка n называется единичной, если все элементы ее главной диагонали равны 1. Матрица любого размера называется нулевой или нуль матрицей, если все ее элементы равны нулю. Единичная матрица обозначается буквой Е, нулевая – О. Матрицы имеют вид:

Линейные операции над матрицами

Определение. Суммой матриц А=(аij) и B=(bij) одинаковых размеров называется матрица С=(сij) тех же размеров, такая что cij=aij+bij для всех i и j.

.

Таким образом, чтобы сложить матрицы А и В, надо сложить их элементы, стоящие на одинаковых местах. Например,

A + B = = C

Определение. Произведение матрицы А на число l называется матрица lА=(l аij), получаемая умножением всех элементов матрицы А на число l.

Например, если и l=5, то

Разность матриц А и В можно определить равенством А-В=А+(-1)В.

Рассмотренные операции называются линейными.

Отметим некоторые свойства операций.

Пусть А,В,С – матрицы одинакового размера; a,b - действительные числа.

А+В = В+А – коммутативность сложения.

(А+В)+С = А+(В+С) – ассоциативность сложения.

Матрица О, состоящая из нулей, играет роль нуля: А+О=А.

Для любой матицы А существует противоположная –А, элементы которой отличаются от элементов А знаком, при этом А+( -А)=О.

a(bА) = (ab)А = (aА)b. 6. (a+b)А = aА+bА.

7. a(А+В) = aА+aВ. 8. 1* А = А. 9. 0 * А = 0.

Умножение матриц

В матричной алгебре важную роль играет операция умножения матриц, это весьма своеобразная операция.

Определение. Произведением матрицы А=(аij) размера и прямоугольной матрицы B=(bij) размера называется прямоугольная матрица С=(сij) размера , такая что cij=ai1+b1j+ ai2+b2j+…+ aik+bkj; , .

Таким образом, элемент произведения матриц А и В, стоящий в i-ой строке и j-ом столбце, равен сумме произведений элементов i-ой строки первой матрицы А на соответствующие элементы j-ого столбца второй матрицы В т.е.

.

Произведение С=АВ определено, если число столбцов матрицы А равно числу строк матрицы В. Это условие, а также размеры матриц можно представить схемой:

Очевидно, что операция умножения квадратных матриц всегда определена.

Примеры. Найдем произведения матриц АВ и ВА, если они существуют.

1. , .

2. , .

Таким образом, коммутативный (переместительный) закон умножения матриц, вообще говоря, не выполняется, т.е. В частном случае коммутативным законом обладает произведение любой квадратной матрицы А n-го порядка на единичную матрицу Е такого же порядка, т.е.

3. , .

Для этих матриц произведение как АВ ,так и ВА не существует.

,

Получим , ВА – не существует.

Свойства умножения матриц.

Пусть А,В,С – матрицы соответствующих размеров (т.е. произведения матриц определены), l - действительное число. Тогда на основании определений операций и свойств действительных чисел имеют место следующие свойства:

(АВ)С = А(ВС) – ассоциативность.

(А+В)С = АС+ВС – дистрибутивность.

А(В+С) = АВ+АС – дистрибутивность.

l(АВ) = (lА)В = А(lВ).

ЕА = АЕ = А, для квадратных матриц единичная матрица Е играет роль единицы.

Приведем пример доказательства лишь одного свойства. Докажем, например, свойство 3.

Пусть для А=(аij), B=(bij), C=(cij) произведения матриц определены. Найдем элемент i-ой строки и j-го столбца матрицы А(В+С). Это будет число

аi1(b1j+c1j)+ аi2(b2j+c2j)+…+аin(bnj+cnj) =

i1b1j+ai2b2j+…+ainbnj)+ (аi1c1j+ai2c2j+…+aincnj).

Первая сумма в правой части равенства равна элементу из i-ой строки и j-го столбца матрицы АВ, а вторая сумма равна элементу из i-ой строки и j-го столбца матрицы АС. Рассуждение верно при любых i и j, то свойство 3 доказано.

Упражнение 1. Проверьте свойство ассоциативности 1 для матриц:

, , .

Упражнение 2. Проверьте свойство дистрибутивности 2 для матриц:

, , .

Упражнение 3. Найти матрицу А3, если .

Вырожденные и невырожденные матрицы

Определение. Матрица называется вырожденной, если ее определитель равен нулю, и невырожденной, если определитель матрицы отличен от нуля.

Пример. , = 16-15 = 1 0; А – невырожденная матрица.

, = 12-12 = 0; А – вырожденная матрица.

Теорема. Произведение матриц есть вырожденная матрица тогда и только тогда, когда хотя бы один из множителей есть вырожденная матрица.

Необходимость. Пусть АВ – вырожденная матрица, т.е. =0. Тогда, в силу того, что определитель произведения матриц равен произведению определителей перемножаемых матриц, имеем Это значит, что хотя бы одна из матриц А или В является вырожденной.

Достаточность. Пусть в произведении АВ матрица А вырожденная, т.е. =0. Найдем , т.к. =0; итак, =0; АВ - вырожденная матрица.

Замечание. Доказанная теорема справедлива для любого числа множителей.

Обратная матрица

Определение. Квадратная матрица В называется обратной по отношению к матрице А такого же размера, если

АВ = ВА = Е. (1)

Пример. , .

В – матрица обратная к А.

Теорема. Если для данной матрицы обратная существует, то она определяется однозначно.

Предположим, что для матрицы А существуют матрицы Х и У, такие, что

АХ = ХА = Е (2)

АУ = УА = Е (3)

Умножая одно из равенств, например, АХ = Е слева на У, получим У(АХ) = УЕ. В силу ассоциативности умножения имеем (УА)Х = УЕ. Поскольку УА = Е, то ЕХ = УЕ, т.е. Х = У. Теорема доказана.

Теорема (необходимое и достаточное условие существования обратной матрицы).

Обратная матрица А-1 существует тогда и только тогда, когда исходная матрица А невырожденная.

Необходимость. Пусть для матрицы А существует обратная А-1, т.е. А А-1 = А-1А = Е. Тогда, ½А А-1½= ½А½½А-1½=½Е½=1, т.е. ½А½0 и ½А-1½0; А – невырожденная.

Достаточность. Пусть дана невырожденная матрица порядка n

,

так что ее определитель 0. Рассмотри матрицу, составленную из алгебраических дополнений к элементам матрицы А:

,

ее называют присоединенной к матрице А.

Следует обратить внимание на то, что алгебраические дополнения к элементам i-ой строки матрицы А стоят в i-ом столбце матрицы А*, для .

Найдем произведения матриц АА* и А*А. Обозначим АА* через С, тогда по определению произведения матриц имеем: Сij = аi1А 1j + а i2А 2j + … + а inАnj; i = 1, n: j = 1, n.

При i = j получим сумму произведений элементов i - ой строки на алгебраические дополнения этой же строки, такая сумма равняется значению определителя. Таким образом Сij = |А| = D - это элементы главной диагонали матрицы С. При i j, т.е. для элементов Сij вне главной диагонали матрицы С, имеем сумму произведений всех элементов некоторой строки на алгебраические дополнения другой строки, такая сумма равняется нулю. Итак, = АА*

Аналогично доказывается, что произведение А на А* равно той же матрице С. Таким образом, имеем А*А = АА* = С. Отсюда следует, что

Поэтому, если в качестве обратной матрицы взять , то Итак, обратная матрица существует и имеет вид:

.

Пример. Найдем матрицу, обратную к данной:

Находим D = |А| = -1 ¹ 0, А существует. Далее находим алгебраические дополнения элементов матрицы А:

А = = 0 ; А = = -1; А = = 3;

А = = -3; А = = 3; А = = -4;

А = = 1; А = = -1; А = = 1;

А =

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.monax.ru/


1. Реферат Сражение под Малоярославцем
2. Реферат на тему The BishopMoore Correspondence On
3. Курсовая на тему Функционирование древесно-массного и варочного цехов комбината
4. Реферат Лечебная физическая культура при травмах локтевого сустава
5. Реферат на тему Роль бюджета в реализации национальных программ
6. Реферат на тему Shakespearean Comedy 2 Essay Research Paper Shakespeare
7. Статья на тему Обеспечение пожарной безопасности образовательного процесса
8. Реферат Битва на Калке 2
9. Реферат на тему The Ark Of The Covenant Essay Research
10. Курсовая Блистающий мир белков и пептидов