Реферат

Реферат История математики в Индии

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.11.2024




Данная статья — часть обзора История математики.
Развитие индийской математики началось, вероятно, достаточно давно, но документальные сведения о начальном её периоде практически отсутствуют.

Индийская нумерация (способ записи чисел) изначально была изысканной. В санскрите были средства для именования чисел до 1050. Для цифр сначала использовалась сиро-финикийская система, а с VI века до н. э. — написание «брахми», с отдельными знаками для цифр 1-9. Несколько видоизменившись, эти значки стали современными цифрами, которые мы называем арабскими, а сами арабы — индийскими.

Первые дошедшие до нас «сиддханты» (научные сочинения) относятся уже к IV—V векам н. э., и в них заметно сильное древнегреческое влияние. Отдельные математические термины — просто кальки с греческого. Предполагается, что часть этих трудов была написаны греками-эмигрантами, бежавшими из Александрии и Афин от анти-языческих погромов. Например, известный александрийский астроном Паулос написал «Пулиса-сиддханта».

Около 500 г. н. э. неизвестные нам индийские учёные в Индии изобрели десятичную позиционную систему записи чисел. В новой системе выполнение арифметических действий оказалось неизмеримо проще, чем в старых, с неуклюжими буквенными кодами, как у греков, или шестидесятиричных, как у вавилонян.

В VII веке сведения об этом замечательном изобретении дошли до христианского епископа Сирии Севера Себохта, который писал [1]:

Я не стану касаться науки индийцев… их системы счисления, превосходящей все описания. Я хочу лишь сказать, что счет производится с помощью девяти знаков.

Очень скоро потребовалось введение нового числа — нуля. Учёные расходятся во мнениях, откуда в Индию пришла эта идея — от греков, из Китая или индийцы изобрели этот важный символ самостоятельно. Первый код нуля обнаружен в записи от 876 г. н. э., он имеет вид привычного нам кружочка.

Дроби в Индии записывались вертикально, как делаем и мы, только вместо черты дроби их заключали в рамку (так же, как в Китае и у поздних греков). Действия с дробями ничем не отличались от современных.

Индийцы использовали счётные доски, приспособленные к позиционной записи. Они разработали полные алгоритмы всех арифметических операций, включая извлечение квадратных и кубических корней. Сам наш термин «корень» появился из-за того, что индийское слово «мула» имело два значения: основание и корень (растения); арабские переводчики ошибочно выбрали второе значение, и в таком виде оно попало в латинские переводы. Возможно, аналогичная история произошла со словом «синус». Для контроля вычислений применялось сравнение по модулю 9.

К V—VI векам относятся труды Ариабхаты, выдающегося индийского математика и астронома. В его труде «Ариабхатиам» встречается множество решений вычислительных задач. В VII веке работал другой известный индийский математик и астроном, Брахмагупта. Начиная с Брахмагупты, индийские математики свободно обращаются с отрицательными числами, трактуя их как долг. Предположительно, эта идея пришла из Китая. При решении уравнений, однако, отрицательные результаты неизменно отвергали. Брахмагупта, как и Ариабхата, систематически применял непрерывные дроби, теория которых отсутствовала у греков.

Особенно далеко индийцы продвинулись в алгебре и в численных методах. Их алгебраическая символика богаче, чем у Диофанта, хотя несколько громоздка (засорена словами). Геометрия по каким-то причинам вызывала у индийцев слабый интерес — доказательства теорем состояли из чертежа и слова «смотри». Формулы для площадей и объёмов, а также тригонометрию они, скорее всего, унаследовали от греков.

Ряд открытий был сделан в области решения неопределённых уравнений в натуральных числах. Вершиной стало решение в общем виде уравнения ax2 + b = y2. В 1769 г. индийский метод переоткрыл Лагранж.

В VII—VIII веках индийские математические труды переводятся на арабский. Десятичная система проникает в страны ислама, а через них, со временем — и в Европу.

В XI веке происходит захват и разорение мусульманами Северной Индии (Махмуд Газневи). Культурные центры переносятся в Южную Индию. Научная жизнь на длительный период угасает. Из значительных фигур этого периода можно выделить Бхаскару, автора астрономо-математического трактата «Сиддханта-широмани». Бхаскара дал решение уравнения Пелля и ряда других диофантовых уравнений, продвинул теорию непрерывных дробей и сферическую тригонометрию.

XVI век был отмечен крупными открытиями в теории разложения в ряды, переоткрытыми в Европе 100—200 лет спустя. В том числе — ряды для синуса, косинуса и арксинуса. Поводом к их открытию послужило, видимо, желание найти более точное значение числа \pi\,.

Список литературы:

  1. История математики с древнейших времён до начала XIX столетия (под ред. А. П. Юшкевича), М., Наука, 1972, том I, стр.183.

Источник: http://ru.wikipedia.org/wiki/История_математики_в_Индии

1. Отчет по практике на тему Структура практикумов системы Фобус
2. Реферат на тему Hedonism And The Great Gatsby Essay Research
3. Контрольная работа Социальнополитические программы декабристов
4. Реферат на тему Family Essay Research Paper Scholarship EssaySince the
5. Курсовая Элементы состава преступления их признаки и функции
6. Курсовая Государственный бюджет, его содержание и функции
7. Реферат Магнитные съемки различных масштабов
8. Реферат Содержание и признаки предпринимательства
9. Диплом на тему Лікувальна фізична культура в комплексній реабілітації при захворюванні невриту лицьового нерва
10. Реферат Еропкины