Реферат

Реферат Решение смешанной задачи для уравнения гиперболического типа методом сеток

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024




Решение смешанной задачи для уравнениягиперболического типа методом сеток
Рассмотрим смешанную задачу для волнового уравнения ( 2 u/ t2) = c 2 * ( 2u/ x2) (1). Задача состоит в отыскании функции u(x,t) удовлетворяющей данному уравнению при 0 < x < a, 0 < t T, начальным условиям u(x,0) = f(x), u(x,0)/ t = g(x) , 0 x a и нулевыми краевыми условиями u(0,t) = u(1,t)=0.

Так как замена переменных t  ct приводит уравнение (1) к виду ( 2 u/ t2) = ( 2u/ x2), то в дальнейшем будем считать с = 1.

Для построения разностной схемы решения задачи строим в области D = {(x,t) | 0 x a, 0 t T } сетку xi = ih, i=0,1 ... n , a = h * n, tj = j*  , j = 0,1 ... , m,  m = T и аппроксимируем уравнение (1) в каждом внутреннем узле сетки на шаблоне типа “крест”.




t
T
j+1

j
j-1
0 i-1 i i+1


Используя для аппроксимации частных производных центральные разностные производные, получаем следующую разностную аппроксимацию уравнения (1) .


ui,j+1 - 2uij + ui,j-1 ui+1,,j - 2uij + ui-1, j


2 h2

(4)
Здесь uij - приближенное значение функции u(x,t) в узле (xi,tj).

Полагая, что  =  / h , получаем трехслойную разностную схему

ui,j+1 = 2(1-  2 )ui,j +  2 (ui+1,j- ui-1,j) - ui,j-1 , i = 1,2 ... n. (5)

Для простоты в данной лабораторной работе заданы нулевые граничные условия, т.е.  1(t)  0,  2(t)  0. Значит, в схеме (5) u0,j= 0, unj=0 для всех j. Схема (5) называется трехслойной на трех временных слоях с номерами j-1, j , j+1. Схема (5) явная, т.е. позволяет в явном виде выразить ui,j через значения u с предыдущих двух слоев.

Численное решение задачи состоит в вычислении приближенных значений ui,j решения u(x,t) в узлах (xi,tj) при i =1, ... n, j=1,2, ... ,m . Алгоритм решения основан на том, что решение на каждом следующем слое ( j = 2,3,4, ... n) можно получить пересчетом решений с двух предыдущих слоев ( j=0,1,2, ... , n-1) по формуле (5). На нулевом временном слое (j=0) решение известно из начального условия ui0 = f(xi).

Для вычисления решения на первом слое (j=1) в данной лабораторной работе принят простейший способ, состоящий в том, что если положить u(x,0)/ t  ( u( x,  ) - u(x,0) )/  (6) , то ui1=ui0+ +  (xi), i=1,2, ... n. Теперь для вычисления решений на следующих слоях можно применять формулу (5). Решение на каждом следующем слое получается пересчетом решений с двух предыдущих слоев по формуле (5).

Описанная выше схема аппроксимирует задачу с точностью до О(  +h2). Невысокий порядок аппроксимации по  объясняется использованием слишком грубой аппроксимации для производной по е в формуле (6).

Схема устойчива, если выполнено условие Куранта  < h. Это означает, что малые погрешности, возникающие, например, при вычислении решения на первом слое, не будут неограниченно возрастать при переходе к каждому новому временному слою. При выполнении условий Куранта схема обладает равномерной сходимостью, т.е. при h  0 решение разностной задачи равномерно стремится к регшению исходной смешанной задачи.

Недостаток схемы в том, что как только выбраная величина шага сетки h в направлении x , появляется ограничение на величину шага  по переменной t . Если необходимо произвести вычисление для большого значения величины T , то может потребоваться большое количество шагов по переменной t. Указанный гнедостаток характерен для всех явных разностных схем.

Для оценки погрешности решения обычно прибегают к методам сгущения сетки.

Для решения смешанной задачи для волнового уравнения по явной разностной схеме (5) предназначена часть программы, обозначенная Subroutine GIP3 Begn ... End . Данная подпрограмма вычисляет решение на каждом слое по значениям решения с двух предыдущих слоев.

Входные параметры :

hx - шаг сетки h по переменной х;

ht - шаг сетки  по переменной t;

k - количество узлов сетки по x, a = hn;

u1 - массив из k действительных чисел, содержащий значение решений на ( j - 1 ) временном слое, j = 1, 2, ... ;

u2 - массив из n действительных чисел, содержащий значение решений на j - м временном слое, j = 1, 2, ... ;

u3 - рабочий массив из k действительных чисел.

Выходные параметры :

u1 - массив из n действительных чисел, содержащий значение решения из j - м временном слое, j = 1, 2, ... ;

u2 - массив из n действительных чисел, содержащий значение решения из ( j +1) - м временном слое, j = 1, 2, ... .

К части программы, обозначенной как Subroutine GIP3 Begin ... End происходит циклическое обращение, пеоред первым обращением к программе элементам массива u2 присваиваются начальные значения, а элементам массива u1 - значения на решения на первом слое, вычислинные по формулам (6). При выходе из подпрограммы GIP3 в массиве u2 находится значение решения на новом временном слое, а в массиве u1 - значение решения на предыдущем слое.

Порядок работы программы:

1) описание массивов u1, u2, u3;

2) присвоение фактических значений параметрам n, hx, ht, облюдая условие Куранта;

3) присвоение начального значения решения элементам массива и вычисленное по формулам (6) значение решения на первом слое;

4) обращение к GIP3 в цикле k-1 раз, если требуется найти решение на k-м слое ( k  2 ).

Пример:



1
0.5 0.5
Решить задачу о колебании струны единичной длины с закрепленными концами, начальное положение которой изображено на рисунке. Начальные скорости равны нулю. Вычисления выполнить с шагом h по x, равным 0.1, с шагом  по t, равным 0.05, провести вычисления для 16 временных слоев с печатью результатов на каждом слое. Таким образом, задача имеет вид

(  2 u/  t2) = (  2 u/  x 2) , x  [0,1] , t[0,T] ,

u (x,0)=f (x) , x[0,a], u(x,0)/ t=g(x), x[0,a],

u ( 0 , t ) = 0, u ( 1 , t ) = 0, t  [ 0 , 0.8 ],
 2x , x  [0,0.5] ,

f(x) =  g( x ) = 0

 2 - 2x , x  [0.5,1] ,
Строим сетку из 11 узлов по x и выполняем вычисления для 16 слоев по t. Программа, и результаты вычисления приведены далее.
Приложение 1

(пример выполнения лабораторной работы)

Программа решения смешанной задачи для уравнения гиперболического типа методом сеток.

Program Laboratornaya_rabota_43;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin
If x <= 0.5 then

f := 2 * x

else

f := 2 - 2 * x;

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 2');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;

t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.
Приложение 3

( выполнения лабораторной работы. Вариант 11)

Program Laboratornaya_rabota_43_variant_11;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

f := x * ( x * x - 1 );

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;
t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);
For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.
(выполнения лабораторной работы. Вариант 20)

Program Laboratornaya_rabota_43_variant_20;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

f := 10 * x * ( x * x * x - 1 );

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;

t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.
( выполнения лабораторной работы. Вариант 14)

Program Laboratornaya_rabota_43_variant_14;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }
Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin
f := x * sin( 2 * (x - 1) );
End;
Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;
Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;
t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.
( выполнения лабораторной работы. Вариант 13)

Program Laboratornaya_rabota_43_variant_13;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }

Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

f := sin(pi * x * x);

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;

t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;

t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.
( выполнения лабораторной работы. Вариант 12)

Program Laboratornaya_rabota_43_variant_12;

Const

hx = 0.1 ; { Шаг по x - hx }

ht = 0.05 ; { Шаг по t - ht }

n = 11 ; { Количество узлов }
Function f(x : Real) : Real; { Данная функция }

{ вычисляющая решение при t=0 }

Begin

f := sin(pi * x) * cos(x);

End;

Function g(x : Real) : Real; { Данная функция }

{ вычисляющая производную решения при t=0 }

Begin

g := 0;

End;

Var

xp : Array[1..n] of Real;

i,j,n1 : Word;

x,t,a1,b1 : Real;

u1,u2,u3 : Array[1..n] of Real;

Begin

n1 := n;

WriteLn('Приложение 4');

WriteLn('------------');

WriteLn('Результат, полученный при вычислении программы :');

WriteLn;

xp[1] := 0;

xp[n] := 1;

For i := 2 to ( n - 1 ) do

Begin

x := (i-1) * hx;

xp[i] := x;

u1[i] := f(x); { u(x,0) на 0 слое }

u2[i] := u1[i] + ht * g(x); { u(x,ht) на 1 слое }

End;

{ /// Задание граничных условий \\\ }

u1[1] := 0 ; { u(0,0) }

u1[n] := 0 ; { u(1,0) }

u2[1] := 0 ; { u(0,ht) }

u2[n] := 0 ; { u(1,ht) }

u3[1] := 0 ; { u(0,2ht) }

u3[n] := 0 ; { u(1,2ht) }

{ /// Печать заголовка \\\ }

Write(' ');

For i := 1 to n do Write(' x=', xp[i]:1:1);

WriteLn;
t := 0;

{ /// Печать решения на нулевом слое \\\ }

Write('t=',t:2:2,' ');

For i := 1 to n do

If u1[i] >= 0 then Write(' ',u1[i]:3:3) else Write(u1[i]:3:3) ;

t := t + ht;

{ /// Печать решения на первом слое \\\ }

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

For j := 1 to 15 do

Begin

{Subroutine GIP3 Begin}

n1 := n1-1;

{Вычисление параметра сетки для проверки условия Куранта}

a1 := ht/hx;

if a1 > 1 then WriteLn('Нарушено условие Куранта') else

Begin

b1 := a1 * a1;

a1 := 2 * ( 1 - b1);

{Вычисление решения на очередном слое}

For i := 2 to n do u3[i] := a1*u2[i] + b1 * (u2[i+1] +

u2[i-1]) - u1[i];

For i := 2 to n do

Begin

u1[i] := u2[i];

u2[i] := u3[i]

End;

End;

u1[n] := 0;

u2[n] := 0;

u3[n] := 0;

{Subroutine GIP3 End}

t := t + ht;

WriteLn;

Write('t=',t:2:2,' ');

For i := 1 to n do

{Вывод результатов}

If u2[i] >= 0 then Write(' ',u2[i]:3:3) else Write(u2[i]:3:3);

End;

WriteLn;

WriteLn;

End.

1. Реферат Пламенные революционеры
2. Сочинение Весна в лирике русских поэтов. По стихотворениям Фета Первый ландыш и Майкова Поле зыблется цветами
3. Реферат Триполитания
4. Диплом Похищение человека проблемы квалификации
5. Реферат на тему Orinoco Crocodile Essay Research Paper ORINOCO CROCODILELocationThe
6. Реферат Участие России в первой мировой войне 2
7. Реферат на тему Irland And Albania Essay Research Paper Comparing
8. Биография на тему Герман Гессе
9. Краткое содержание Перед заходом солнца
10. Реферат на тему Araby Essay Research Paper ARABYThe short story