Реферат

Реферат Теории деформационного упрочнения монокристаллов

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025




 ТЕОРИИ ДЕФОРМАЦИОННОГО УПРОЧНЕНИЯ МОНОКРИСТАЛЛОВ

Среди многих неясных вопросов в проблеме пластичности монокри­сталлов вопрос о природе деформационного упрочнения, которое состоит в увеличении сопротивляемости кристалла пластической деформации при активном нагружении, является одним из самых трудных. По современным представлениям физики пластичности основная причина упрочнения - затруд­нение движения дислокаций по кристаллу вследствие увеличения их коли­чества в кристалле и связанного с этим усиления взаимодействия дислокаций друг с другом. Для построения физической теории деформационного упрочне­ния необходимо описать эволюцию дислокационной структуры: увеличение плотности дислокаций, характер их расположения и взаимодействия в кри­сталле при увеличении внешнего напряжения и связать эти изменения с при­ростом пластической деформации кристалла. Наибольший успех в данном направлении достигнут для монокристаллов ГЦК металлов, в которых про­цесс пластической деформации обладает ярко выраженной стадийностью. Создано несколько теорий деформационного упрочнения для каждой отдель­ной стадии. Не давая полного обзора всех теорий, остановимся в основном на теории Зегера, которая является наиболее обоснованной как в плане срав­нения с экспериментальными данными, так и с точки зрения логической по­следовательности. Однако начнем с рассмотрения самых первых теорий де­формационного упрочнения Тейлора и Мотта, ставших теперь уже классиче­скими, для того, чтобы внимательно проследить путь развития теории от первых ее шагов до современного состояния.

1.
ТЕОРИЯ ТЕЙЛОРА


Первая теория деформационного упрочнения, оперирующая дислока­ционными представлениями, предложена Тейлором в 1934 г. К тому времени было установлено, что кривые упрочнения металлических кристаллов, таких, как алюминий, в первом приближении можно считать параболическими и это учитывалось при разработке теории.

Следуя Тейлору, рассмотрим кристалл, в котором при приложении внешнего напряжения t , действующего в плоскости скольжения в направле­нии скольжения, зарождаются и скользят бесконечные, прямолинейные, парал­лельные друг другу дислокации. Механизм зарождения конкретизировать не будем, а механизмом упрочнения будем считать упругое взаимодействие дис­локаций друг с другом.

Если плотность дислокаций в кристалле  r, то среднее расстояние меж­ду ними   l=

r
-1/2
(рис.1 ) и средняя амплитуда случайного поля внутренних напряжений

tm  = amb/e » ambr 1/2                       (2.1)

где a равно  1/2p(1-n) и  1/2p для краевых и винтовых дислокаций соответственно; м. - модуль сдви­га;  n - коэффициент Пуассона; в -величина вектора Бюргерса.



Рисунок 1  Взаимодействие дислокаций  (модель Тейлора)

          Из рис 1 видно, что с ростом плотности дисло­каций  растет и амплитуда случайного поля внут­ренних напряжений, противодействующего         движению дислокаций.

Считая, что зарождение и движение дислокаций происходит со скоростью, намного большей скорости увеличения t, так что условие

t=tm                   (2.2)

выпол­няется в любой момент деформации. Из (2.1) и (2.2) получаем зависимость

r(t)=1/(a2b2)*(t/m)2             (2.3)

Если положить, что с момента зарождения до остановки дислокации проходят в среднем одинаковое расстояние L , то, используя известную фор­мулу для пластического сдвига

                 g=rbL                               (2.4)

и выражение (2.3), получаем параболическое соотношение между напряжени­ем t и сдвигом g. А при подстановке в это соотношение экспериментального значения длины линий скольжения мы получим неплохое совпадение кривой упрочнения параболической формы монокристаллов алюминия с экспериментальными данными.

Однако теория Тейлора не согласуется с экспериментами в том отно­шении, что высота ступенек на линиях скольжения составляет 10 — 100 b, и это говорит о движении большого числа дислокаций друг за другом по одной

и той же плоскости скольжения, а не о движении отдельных дислокаций. Кроме того, в теории Тейлора ничего не сказано о механизме, по которому происходит увеличение количества дислокаций в кристалле при увеличении t.

2. ТЕОРИЯ МОТТА

Мотт преодолел эти затруднения теории Тейлора (1952 г.). К тому вре­мени был предложен оригинальный механизм размножения дислокаций, так называемый источник Франка - Рида. Мотт считал, что в кристалле хаотически располагаются источники дислокаций Франка — Рида, испускающие под дей­ствием внешнего напряжения V в плоскости скольжения группы дислокаций, которые после прохождения некоторого расстояния скапливаются у препятст­вий (рис. 2). Препятствиями могут быть субграницы, сидячие дислокации, и т.п.



Рисунок 2 Взаимодействие скоплений дислокаций  в первичной системе скольжения


Появление в кристалле таких групп дислокаций приводит к увеличе­нию внутреннего напряжения tm . Для его расчета можно рассматривать скопление дислокаций как сверхдислокации с вектором Бюргерса nb, где n число дислокаций в скоплении. Если предположить, что дислокации разных знаков, порождаемые одним источником, скапливаются по обе сто­роны от него, так что общая длина скопления составляет L (каждая дислока­ция продвигается на расстояние L/2), а расстояние между плоскостями равно y  , то плотность сверхдислокации равна 2/Ly, а среднее расстояние между ними есть (Ly/2)1/2

 Пластический сдвиг кристалла в таком случае определяется суммированием сдвигов от каждого скопления и согласно является произведением величины плотности сверхдислокации на их вектор Бюргерса nb на длину их пробега L/2. т.е.

g=nb/y

Эта теория так же, как теория Тейлора, дает параболическую связь между напряжением и деформацией монокристаллов. Однако, как показали экспериментальные исследования, выполненные после 1950 г.,  для ГЦК кристаллов характерна не параболическая, а трехстадийная кривая упрочнения, поэтому для ее описания потребовались более детализированные теории.

3. ТЕОРИЯ ЗЕГЕРА

В теории, предложенной Зегером, считается, что даже хорошо отожжен­ные кристаллы содержат дислокации, которые образуют случайную простран­ственную сетку, состоящую из почти прямолинейных дислокационных сегмен­тов, соединенных между собой тройными узлами. Средняя длина дислокаци­онных сегментов сетки Lo » ro-1/2  где ro -  плотность дислокаций. Большей частью сегменты сетки ростовых дислокаций неподвижны, и лишь некоторые из них при действии внешнего напряжения Т прогибаются между неподвижными узлами сетки. При достижении напряжения

t » mbro1/2            (2.9)

в первичной системе скольжения соответствующие сегменты начинают дейст­вовать как источники Франка — Рида, образуя вокруг каждого систему кон­центрических замкнутых петель в плоскости скольжения - скопление дисло­каций.

Дальнейшее движение дислокаций (расширение петель) ограничивается их взаимодействием с другими дислокациями, скользящими в параллельных плоскостях и с дислокациями леса. При деформации среднеориентированных кристаллов плотность дислокаций леса почти не меняется, поэтому Зегер

считает, что деформационное упрочнение обусловлено ростом плотности дислокаций  в первичной системе скольжения и усилением их взаимодействия друг с другом. Следовательно, эта теория является развитием теорий деформационного упрочнения Тейлора и Мотта.

65


В заключение необходимо отметить, что теорию деформационного упрочнения Зегера, хотя она и является наиболее полной и детально разработанной из со­временных теорий, нельзя считать действительно законченной физической тео­рией деформационного упрочнения ГЦК металлов. В своей основе она явля­ется полуфеноменологической, так как использует экспериментально опреде­ляемые зависимости для длин пробега дислокаций, расстояния между плоско­стями скольжения, числа дислокаций в скоплении. Основным результатом теории Зегера можно считать установление связи между характеристиками дислокационной структуры, определяемыми в процессе деформации по кар­тинам следов.

Полная физическая теория деформационного упрочнения должна быть способ­ной предсказать эволюцию дислокационной структуры и рассчитать кривую деформации кристалла, используя только данные о его исходной дефектной структуре и условиях деформации.




СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1 Аргон А.С. - В кн.: Физика прочности и пластичности. - М.: Металлургия, 1972,с. 186 - 214.

2 Берне Р., Кронмюллер Г. Пластическая деформация

     монокристаллов. - М.:Мир, 1969.-272 с.

3 Горячев С.Б. Микроскопические механизмы деформационного

   упрочнения. -М.: МИФИ 1984 61-с

77



1. Реферат на тему Средневековые струнные музыкальные инструменты
2. Контрольная работа Лесковский цикл о праведниках и народная культура
3. Реферат на тему Legalization Of Marijuana Essay Research Paper For
4. Реферат Билеты по предмету Античная культура за осенний семестр 2000 года
5. Курсовая на тему Проблемы управления качеством продукции на российских предприятиях автомобильной промышленности
6. Реферат Философия истории П.А. Сорокина
7. Реферат на тему Past Failures Of The Palestinian Liberation Organization
8. Реферат на тему Interview Essay Research Paper The InterviewFor my
9. Курсовая Мотивация как функция управления менеджмента
10. Доклад на тему Об изучении общего лексического фонда в структуре славянских языков