Реферат

Реферат Созвездия - участки звездного неба

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024



Реферат на тему:

" Созвездия – участки звёздного неба".
       В темную, безлунную и безоблачную ночь на небе видно множество звезд. Кажется, трудно разобраться в этой величественной картине звездного неба, о кото­рой вдохновенно писал наш великий соотечественник М. В. Ломоносов (1711—1765):
«Открылась бездна звезд полна,

Звездам числа нет, бездне — дна».
       Еще трудней представляется задача пересчитать все видимые на небе звезды. Но трудная на первый взгляд, она становится вполне разрешимой, если применить правильные способы ее решения. Эти способы создава­лись не сразу, а десятилетиями и веками, и первые из них уходят своими корнями в глубокую древность. Именно на заре человеческого общества, когда впервые возникло примитивное производство, уже кочевым пле­менам необходимо было ориентироваться при переходах с места па место с тем, чтобы отыскать путь к прежним местам стоянок. На более высокой ступени развития человеческого общества, при возникновении земледе­лия, появилась необходимость вести, хотя бы и грубый, счет времени для регулирования сельскохозяйственных работ.

       Какой же выход видели из создавшегося положения древние пароды, не имевшие в своем распоряжении даже самых элементарных начатков современных нам наук? Единственно, что было всегда перед ними, а вернее, над ними,— это звездное небо, по которому древние народы стали постепенно учиться ориентироваться на мест­ности и вести счет времени. Практическая необходи­мость изучения звездного неба привела к зарождению науки, получившей впоследствии в Древней Греции название астрономии, происшедшее от двух греческих слов: астрон — звезда и номос — закон.

       Но само название совсем не служит доказательством зарождения и развития этой науки только в Древней Греции. Астрономия возникла и самостоятельно разви­валась буквально у всех народов, но степень ее разви­тия, естественно, находилась в прямой зависимости от уровня развития производительных сил и культуры на­родов.

       Если кто-либо совершал увлекательное путешествие из Москвы в Ярославль по Ярославскому шоссе, тот не мог не обратить внимания па сравнитель­но небольшое число поворотов на всем его протяжении. Шоссе почти прямолинейно, и его повороты связаны лишь с обходом оврагов, болотистых мест или слишком крутых холмов. А ведь Ярославское шоссе проложено в основном по старой проезжей дороге, исстари связывавшей Москву с Ярославлем.

       Оба города — почти ровесники. Москва упоминается в летописях с 1147 г., хотя, судя по последним архео­логическим раскопкам в Московском Кремле, она как селение существовала уже во второй половине Х в. Яро­славль основан в 1010 г. К этому же времени относится и появление проезжего тракта между двумя городами. Каким же путем удалось в те времена проложить удиви­тельно прямую наикратчайшую дорогу между двумя удаленными друг от друга городами? Да только таким же, каким была проложена не менее прямая дорога меж­ду Москвой и Владимиром — ориентировкой по звездам; других способов ориентировки в те времена не было.

       Но как же можно ориентироваться по звездам, если их видно па небе великое множество? Казалось бы, лег­ко запутаться в этом обилии звезд. Вот для этого и нуж­но было, прежде всего, сгруппировать яркие звезды (ко­торых на небе не так уже много) в фигуры, хорошо запоминающиеся своими контурами. Такие звездные фи­гуры — сочетания звезд, или созвездия — были выде­лены, а позже к ним отнесли и более слабые звезды, рас­положенные в районе созвездий. Вполне естественно, что различные народы создавали своим воображением разные созвездия, а если случайно контуры созвездий и совпадали, то они именовались по-разному. Источни­ками названий созвездий, как правило, служили ми­фы о богах, сказания о легендарных героях и связан­ных с ними событиях, различные животные и, нако­нец, орудия производства, используемые народами в повседневной жизни.

       Так, известную группу из семи ярких звезд, на­поминающую очертание ковша, древние греки назвали

       Большой Медведицей. Если к этой группе звезд присое­динить слабые звезды, расположенные вблизи ковша, то при достаточной фантазии можно провести границы этого созвездия так, что они будут напоминать очерта­ния какого-то большого зверя
       Греческий миф рассказывает о том, что нимфа Каллисто была превращена ревнивой супругой Зевса Ге­рой в медведицу, которую затравил на охоте собаками ее собственный сын Аркад (Волопас). Зевс дал Каллисто бессмертие, поместив ее на небе в виде созвездия Боль­шой Медведицы. Рядом с Большой Медведицей располо­жены и ее преследователи — Волопас и Гончие Псы (рис. 2), но созвездие Гончих Псов появилось на небе лишь в XVII в., когда древнегреческий миф был допол­нен спутниками охотника. В Древней Греции созвездие Большой Медведицы называлось также Колесницей, о чем упоминает Гомер в «Одиссее».

      В Древней Руси это же созвездие имело разные на­звания — Воз, Колесница, Кастрюля, Ковш; народы, населявшие территорию Украины, называли его Теле­гой; в Заволжье оно звалось Большим Ковшом, а в Сибири — Лосем. И до сих пор в некоторых областях нашей страны сохранились эти названия.

       По аналогии другую группу из семи, но более слабых звезд, расположенных вблизи Большой Медведицы и также напоминающую очертания ковша, древние греки назвали созвездием Малой Медведицы. Эта же группа звезд была наименована сибиряками Малым Ковшом, а народы, населявшие побережье Ледовитого океана, видели в ней белого медведя с задранной вверх голо­вой, на носу которого красовалась Полярная звезда, расположенная в самом конце ручки ковша

       Весьма оригинально название этих двух созвездий у народов, населявших территорию нынешней Казах­ской ССР. Наблюдая звездное небо, они, как и другие народы, обратили внимание на неподвижность Поляр­ной звезды, которая в любое время суток неизменно занимает одно и то же положение над горизонтом. Вполне естественно, что эти народы, основным источни­ком существования которых были табуны лошадей, назвали Полярную звезду «железным гвоздем» («Темир-Казык»),  вбитым в небо, а в остальных звездах Малой Медведицы видели привязанный к этому гвоздю» аркан, надетый на шею Коня (созвездие Большой Медведицы). В течение суток Конь обегал свой путь вокруг «гвоздя» (рис. 4). Таким образом, древние казахи объединяли созвездия Большой и Малой Медведицы в одно.
       Если среднюю звезду хвоста Большой Медведицы мысленно соединить прямой линией с Полярной звездой и продлить эту линию дальше, то мы увидим созвездие
       Зимними вечерами над южной стороной горизонта фасуется самое эффектное созвездие неба — созвездие Ориона, бросающееся в глаза своими семью яркими звездами, из которых расположение четырех напоминает гигантскую букву X, а три остальные, вытянутые в ряд, перечеркивают эту букву посредине. Справа от верхних ярких звезд, а также левее и выше них видны две дуги из слабых звезд, обращенные вогнутостью к ярким звез­дам. Древние греки назвали это созвездие именем мифического великана, охотника Ориона (рис. 7), и представ­ляли его прикрывающимся щитом из львиной шкуры,  (правая дуга слабых звезд) и замахивающимся палицей, т. е. дубиной (левая верхняя дуга слабых звезд), на бе­гущего к нему справа Быка (Тельца). Три средние яр­кие звезды изображали охотничий пояс, к которому при­вешен меч — ряд слабых звезд, расположенных книзу от пояса. Современная астрономия тоже часто пользу­ется этими терминами — пояс и меч Ориона.
       В III в. до пашей эры греческие (александрийские) астрономы свели названия созвездий в единую систему, которую впоследствии заимствовала европейская наука и сохранила ее до наших дней, в особенности названия созвездий северного полушария неба. В южном же полу­шарии, изучение которого европейцами началось, по су­ществу, лишь в XVIII и XIX вв., созвездия получили более современные названия: Телескоп, Часы, Насос и другие.

       В настоящее время под созвездиями подразумевают не выделяющиеся группы звезд, а участки звездного не­ба, так что все звезды (как яркие, так и слабые) причислены к созвездиям. Современные границы и названия созвездий утверждены в 1922 г. на I съезде Междуна­родного астрономического союза (MAC). Все небо разделено на 88 созвездий, из которых 31 находится в се­верном небесном полушарии, а 48 — в южном. Осталь­ные 9 созвездий (Рыбы, Кит, Орион, Единорог, Секс­тант, Дева, Змея, Змееносец и Орел) расположены в обоих небесных полушариях, по обе стороны от вообра­жаемого на небе большого круга, называемого небес­ным экватором, что на латинском языке означает «уравниватель», так как он делит все небо на два равных по­лушария.

       Как найти приближенное положение небесного эква­тора, мы покажем несколько ниже, а сейчас отметим, что на территории Советского Союза видны все созвездия северного полушария неба и некоторые созвездия юж­ного полушария, в зависимости от географической ши­роты места наблюдения: чем оно расположено южнее, тем больше созвездий южного полушария доступно на­блюдениям. Так, в Ленинграде видна лишь часть звезд южного созвездия Скорпиона и то очень низко над гори­зонтом, а созвездие Центавра совсем не видно. В Арме­нии же, Грузии и Узбекистане видны уже многие звезды созвездия Центавра и все созвездие Скорпиона.

       Далеко не все созвездия могут быть сразу найдены на небе, так как многие из них состоят из слабых звезд, и только около 30 созвездий четко выделяются своими контурами и яркими звездами. К ним относятся созвездия Большой Медведицы, Пегаса, Кассиопеи, Возничего, Льва и другие. Площади, занимаемые созвездиями на небе, и число звезд в них далеко не одинаковы. Кстати, отметим, что расстояния между видимыми положениями звезд на небе измеряются в градусах, минутах и се­кундах дуги, а площади, занимаемые созвездиями на небе,— в квадратных градусах. Из ярких созвездий самым большим по площади является созвездие Большой Медведицы, занимающее площадь в 1280 квадратных градусов и насчитывающее, помимо семи ярких звезд ковша, еще 118 звезд, видимых невооруженным глазом. Самое же маленькое созвездие находится в южном полу­шарии неба и не видно на территории России — это кра­сивое яркое созвездие Южного Креста, площадью в 68 квадратных градусов, состоящее из пяти ярких и 25 более слабых звезд. Самого маленького созвездия северного неба обычно не знают, так как оно состоит всего лишь из 10 видимых невооруженным глазом сла­бых звезд; оно называется созвездием Малого Коня, имеет площадь в 72 квадратных градуса и примыкает к юго-западной границе созвездия Пегаса.

       Больше всего ярких звезд, а именно 12, содержит созвездие Скорпиона, но, пожалуй, самым красивым созвездием всего неба является уже упоминавшееся созвездие Ориона, насчитывающее 120 звезд, видимых невооруженным глазом, среди которых семь выделя­ются своим блеском.

       В каждом созвездии основные звезды имеют те или иные обозначения. В древности наиболее ярким звез­дам каждого созвездия давались собственные имена, многие из которых, главным образом греческие и араб­ские, дошли до наших дней. Так, семь ярких звезд ков­ша Большой Медведицы получили названия: Дубхе, Мерак, Фекда, Мегрец, Алиот, Мицар и Бенетнаш. Самая яркая звезда созвездия Волопаса сначала именовалась Аркадом (царем Аркадии), по-гречески — Па­стухом, а затем и до сих пор — Арктуром, т. е. Охот­ником за медведицей (от греческого «арктос» — мед­ведица и «теревтес» — охотник). Яркая звезда в соз­вездии Персея, изменение блеска которой было за­мечено арабами почти 1000 лет назад, получила имя Эль-Гуль (современное имя — Алголь), что означало «Демон», который, по убеждению древних арабов, отличался лицемерием и двуличием. Капеллой или, в пе­реводе с латинского, Козочкой названа наиболее яркая звезда созвездия Возничего, изображавшегося па ста­ринных картах в виде мужчины-возницы (кучера) с кнутом, двумя козлятами в левой руке и с козой на плече.

       По мере увеличения числа изучаемых звезд стало невозможно запоминать их имена, и с 1603 г. сравни­тельно яркие звезды в созвездиях стали обозначать бук­вами греческого алфавита, как правило, в порядке убы­вания блеска звезд, хотя из этого правила имеется мно­го исключений. В виде примера сошлемся опять на Большую Медведицу, звезды которой обозначены бук­вами греческого алфавита не в порядке убывания блеска, а по контуру ковша (см. рис. 1). В результате оказалось, что самая яркая звезда созвездия, Алиот, обозначена не первой (), а пятой буквой () греческого алфавита (см. табл. 1).

       В созвездии Близнецов звезда  (Кастор) слабее звезды  (Поллукс), в созвездии Ориона звезда Бетель-гейзе () слабее звезды Ригеля (), в созвездии Пегаса наиболее яркая звезда обозначена буквой , а звезда  (Маркаб) — лишь третья по блеску. В созвездии Дра­кона самой яркой является звезда Этамин (), за ней по блеску следует звезда , а звезда   (Тубан) занимает восьмое место. В созвездии же Стрельца буквой  обо­значена лишь шестнадцатая по блеску звезда, а наиболее ярким звездам присвоены обозначения    (Каус Аустралис),  (Нунки),  и .

       Значительно позже для обозначений звезд ввели циф­ровую нумерацию по созвездиям, ныне, как правило, применяемую лишь для слабых звезд, которые в ряде созвездий обозначаются также буквами латинского ал­фавита. Обозначения звезд проставляются на современ­ных картах звездного неба и в специальных списках звезд, именуемых звездными каталогами. К настоящему времени астрономы зарегистрировали в звездных ката­логах все звезды, видимые невооруженным глазом, а также многие звезды, доступные наблюдениям лишь в телескопы. Перепись звезд показывает, что невоору­женному глазу доступны наблюдениям на всем небе около пяти с половиной тысяч звезд, причем на терри­тории России видно только около трех тысяч. Остальное множество звезд из-за их слабого блеска невооружен­ному глазу недоступно.

       Постепенная детализация в изучении звезд привела к необходимости ввести количественную оценку их «ви­димой яркости» или, как теперь принято более правиль­но называть, их блеска. Что звезды имеют различный блеск, видно уже при первом, даже беглом обзоре звезд­ного неба: одни из них очень ярки и сразу привлекают внимание наблюдателя, другие менее ярки, и не так бросаются в глаза, третьи настолько слабы, что не видны невооруженным глазом и для их наблюдения требуются оптические инструменты. Чтобы точно определять блеск звезд, необходимо ввести определенную числовую шка­лу. Можно было бы измерять количество света, которое доходит от звезды до наблюдателя (до Земли), в обычных единицах световой энергии, применяемых в физике. Однако подобная система оценки блеска звезд была бы практически неудобной по двум причинам:

во-первых, количество света, доходящее от звезд до нас, так ничтожно мало, что измерение его общеприня­тыми физическими единицами было бы подобно измере­нию размеров деталей механизма наручных часов кило­метрами;

во-вторых, принятая в этом случае градация блеска звезд была бы так велика, что шкала блеска оказалась бы необычайно громоздкой и невозможно было бы за­помнить значений блеска даже самых ярких звезд.

       Поэтому блеск звезд выражается не в абсолютных физических (или светотехнических) единицах, а в осо­бой условной шкале, введенной еще во II в. до нашей эры древнегреческим астрономом Гиппархом (180— 110 г. до н. э.), когда не было и в помине физических единиц измерений световой энергии. Эта шкала называется шкалой звездных величин. Само название шка­лы, может быть, и не совсем удачно, поскольку шкала не оценивает линейных размеров звезд, а только поз­воляет сравнивать друг с другом блеск звезд. В наше время шкала звездных величин значительно усовер­шенствована и для определения блеска звезд использу­ется точная оптическая аппаратура.

       Если начинающий любитель астрономии спросит, как можно оценивать блеск звезд в условной шкале, пусть он вспомнит измерение температуры. Ведь темпе­ратура есть определенная физическая характеристика, а измеряется она в условной шкале, называемой гра­дусной шкалой.

       Шкала звездных величин основана на восприятии света глазом. Оказывается, человеческий глаз четко от­мечает различие интенсивности источников света, если один из них приблизительно в 2,5 раза ярче другого. Это свойство глаза стало известно науке лишь в конце XVIII в. и является частным случаем более общего психофизиологического закона, сформулированного в XIX в. Э. Вебером (1795--1878) и Г. Фехпером (1801— 1887). Этот закон гласит: Изменение какого-либо ощущения прямо пропорционально относительному из­менению раздражающего фактора, или, иначе, если си­ла раздражения увеличивается в геометрической про­грессии, то восприятие (ощущение) возрастает в арифметической прогрессии. Наши органы чувств, в том числе и глаза, реагируют не на абсолютное, а на относи­тельное изменение внешнего раздражителя, и если, образно говоря, к двум светящимся электролампам оди­наковой мощности подключить еще две такие же, то мы уверенно зафиксируем увеличение освещенности; но если эти две лампы добавят свой свет к излучению де­сяти аналогичных ламп, то паши глаза почти или даже вовсе не заметят различия в освещении.

       Известно, что законы природы действуют объектив­но, т. е. независимо от сознания человека, и становится вполне понятным, почему Гиппарх, не имея представ­ления о законе Вебера — Фехнера, невольно использо­вал его при введении шкалы звездных величин. Наибо­лее ярким звездам Гиппарх приписал первую звездную величину; следующие по градации блеска (т. е. более слабые, примерно в 2,5 раза) он посчитал звездами вто­рой звездной величины; звезды, слабее звезд второй звездной величины в 2,5 раза, были названы звездами третьей звездной величины и т. д.; звездам на пределе видимости невооруженным глазом была приписана шес­тая звездная величина. При такой градации блеска звезд получалось, что звезды шестой звездной величины слабее звезд первой звездной величины в 97,66 раза. Поэтому в 1856 г. английский астроном Н. Р. Погсон предложил считать звездами шестой величины те, которые слабее звезд первой звездной величины ровно в 100 раз. Это предложение было принято всеми астро­номами и до сих пор является основой для определения блеска звезд. В любом интервале шкалы разность в пять звездных величин означает различие блеска звезд ровно в 100 раз. Тогда соотношение блеска звезд двух смежных целых звездных величин получается равным не 2,5, а 2,512, что нисколько не влияет на точность определения звездных величин.

       Из принципа построения шкалы звездных величин видно, что чем слабее звезда, тем больше ее видимая звездная величина. Это позволяет выражать в звездных величинах блеск слабых звезд, не видимых невооружен­ным глазом, но открываемых в телескопы, не нарушая стройности самой шкалы: по мере открытия более сла­бых звезд шкала продолжается в сторону увеличения звездных величин (10-я, 11-я, 12-я и т. д.). В настоящее время известны звезды 24-й звездной величины, которые слабее звезд первой величины примерно в мил­лиард раз.

       Определение блеска звезд в звездных величинах, вы­полненное точными способами измерения с примене­нием специальных приборов — фотометров, показало, что блеск звезд не может быть точно выражен целыми значениями звездных величин (1, 2, 3 и т. д.), ибо блеск звезд весьма разнообразен. Поэтому шкала подразде­ляется на десятые, сотые и даже тысячные доли (в за­висимости от требуемой степени точности) звездных ве­личин. Отсюда блеск большинства звезд выражается дробными значениями звездных величин, всегда обозна­чаемыми латинской буквой т, например, 2,12; 3,56; 5,78 и т. д.

       В качестве примера укажем блеск в звездных вели­чинах семи основных звезд Большой Медведицы (см. рис. 1):


Звезда

Блеск

Звезда

Блеск


 Дубхе

1,95

 Алиот

1,86

 Мерак

2,44

 Мицар

2,17

 Фекда

2,54

 Бенетнаш

1,91

 Мегрец

3,44





       Точные измерения блеска ярких звезд показали, что некоторые из них ярче звезд первой звездной вели­чины; такие звезды считают звездами нулевой звезд­ной величины: например,  Лиры (Вега) имеет блеск 0,14;  Волопаса (Арктур) 0,24;     Возничего (Капел­ла) 0,21 и т. д. Наконец, две звезды — Канопус ( Ки­ля) и Сириус ( Большого Пса) ярче звезд нулевой звезд­ной величины и им приписана отрицательная звездная величина  -0,89 и  -1,58 соответственно.

       В звездных величинах можно выразить блеск Солн­ца (-26,8), Луны (-12,7 в полнолуние) и планет.

       Людям, знакомым с математическими понятиями степени и логарифмов чисел, будет понятно, что шкала звездных величин представляет собой геометрическую прогрессию со знаменателем, равным 2,512, и тогда от­ношение блеска E/E двух объектов, со звездными ве­личинами                 , будет
так как более яркие объекты имеют меньшую звездную величину, и наоборот.

       Обычно эту формулу, называемую формулой Погсона, используют в логарифмическом виде, и так как lg 2,512=0,4, то
       В качестве примера использования этой формулы вычислим отношение освещенности участка земной по­верхности от Солнца и полной Луны, находящихся на одинаковой высоте над горизонтом. Так как видимая звездная величина Солнца            , а полной Луны                        , то
откуда                                                         , т. е. Солнце освещает местность примерно в 440 тысяч раз сильнее, чем полная Луна.

       Аналогично легко найти, что Луна в полнолуние (                        ) ярче Луны в фазе первой четверти (                             ) в 30 раз:
или
       Эта же формула позволяет определять звездные величи­ны т светящихся объектов путем сравнения их блеска Е с блеском E светила с известной звездной величиной m

,
причем отношение E/E измеряется с большой точ­ностью фотометрами. Звездные величины, определяе­мые глазом, хотя бы и с помощью оптических инстру­ментов, называются визуальными звездными величи­нами. Именно о них и шла речь выше.

       В практику астрономии ныне широко внедрилась фотография, которая позволяет фотографировать звезды гораздо более слабые, нежели наблюдаемые глазом в самые сильные телескопы. Так, самый мощный телескоп сейчас позволяет фотографировать звезды до 24, т. е. звезды в 1,6 млрд. раз более слабые, чем звезды нулевой звездной величины.

       Но фотографические пластинки несколько иначе ре­агируют на свет, нежели глаз. Есть фотопластинки, на которые красный свет совсем не действует, желтый свет действует весьма слабо, зато необычайно сильно дейст­вуют синие, фиолетовые и ультрафиолетовые лучи. По­этому звезды красноватого цвета, например, Антарес        ( Скорпиона) или Бетельгейзе ( Ориона), яркие для глаза, па такой фотопластинке выйдут более слабыми, в то время как голубоватые звезды получатся более яр­кими. Это и заставило астрономов ввести еще одну шка­лу звездных величин, основанную на воздействии света па фотопластинку и названную шкалой фотографиче­ских звездных величин. Она строится совершенно так же, как и визуальная шкала звездных величин, но блеск звезд, выраженный в ней, отличается от визу­ального блеска в зависимости от цвета звезды, что поз­воляет по разности фотографической и визуальной звездных величин звезды численно выражать ее цвет. Эта разность называется показателем цвета и является одной из важных характеристик звезды, поскольку связана с ее температурой.

       У желтых и красных звезд показатель цвета положи­телен и достигает +2,1 звездной величины, у белых звезд он близок к нулю, а у голубоватых — отрицате­лен, но не бывает менее  -0,5.

       Чтобы исключить индивидуальные физиологические особенности глаз различных наблюдателей и иметь воз­можность определять показатели цвета слабых звезд, широко применяется еще одна шкала оценки блеска звезд, называемая шкалой фотовизуальных звездных ве­личин.

       Для этой цели звезды фотографируются на специаль­ных фотопластинках, хорошо реагирующих на желтые и зеленые лучи (как и человеческий глаз), причем перед фотопластинкой ставится чистое желтое стекло (желтый светофильтр). Опыт показывает, что определенные та­ким способом звездные величины звезд, называемые в этом случае фотовизуальными, настолько близки к ви­зуальным звездным величинам, что практически совпа­дают с ними, и в настоящее время показатели цвета опре­деляются разностью фотографических и фотовизуаль­ных звездных величин:

       В астрономии имеется еще ряд шкал звездных ве­личин, которые применяются в зависимости от целей исследования. Так, за последние 30 лет широко внедри­лись фотоэлектрические методы изучения блеска звезд с помощью фотоэлементов, которые под действием света генерируют электрический ток (фототок) — явление, открытое еще в 1888—1890 гг. русским физиком А. Г. Столетовым (1839—1896). Современные чувстви­тельные фотоэлементы дают слабый электрический ток под воздействием ничтожно малого освещения, но спе­циальные устройства усиливают ток до величины, до­ступной измерению с большой точностью.

       Исследование излучения звезд в разных лучах поз­воляет получить ряд важных физических характерис­тик звезд. Именно для этой цели и определяют блеск звезд в разных лучах, для чего перед фотоэлементами ставят светофильтры разного цвета.

       Теперь, когда мы познакомились с измерением блес­ка звезд, любопытно отметить, что очень ярких звезд нулевой и первой звездной величины не так уж и много, всего лишь 24 на всем небе, зато слабых — мириады! Это объясняется тем, что блеск звезд зависит не только от их действительной светимости, но и от расстояний: чем дальше от нас находятся звезды, тем слабее они выглядят. Цвет же звезд зависит от их поверхностной температуры.

       Всего в северном полушарии неба насчитывается около 2900 звезд, видимых невооруженным глазом, т. е. до 6.
Список использованной литературы:
1. М.М. Дагаев "Наблюдения звёздного неба". Москва "Наука", 1983 г.

2. http://www.astronet.ru/sozv/

3. http://www.chat.ru/~wishmaster666/astro.html

4. http://www.chat.ru/~desecrator/sozvezdiya.html

5. http://www.zvezdy.ru/blesk.html


1. Реферат на тему Child Abuse A Growing Problem Essay Research
2. Реферат Управление кадровой работой
3. Курсовая на тему Фрезерование сегментного шпоночного паза
4. Контрольная работа Содержание и формы управленческих решений
5. Реферат на тему School Uniforms 4 Essay Research Paper School
6. Реферат Эмокиды
7. Биография Генрих, граф де Шамбор
8. Реферат на тему Toe Caps Essay Research Paper Vernon KarstEnglish
9. Реферат Экология
10. Реферат Правила безопасности при работе с компьютером