Реферат

Реферат Закон исключения третьего

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025



МОСКОВСКИЙ ГУМАНИТАРНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

Финанасы и кредит








РЕФЕРАТ




ДИСЦИПЛИНА: Логика

ТЕМА: Закон исключения третьего и закон достаточного основания..

ИСПОЛНИТЕЛЬ:


 











Содержание.

1.     
Введение – 2 стр.


2.     
Основные законы мышления – 4 стр.


3.     
Закон исключения третьего – 4 стр.


4.     
Закон достаточного основания – 6 стр.


5.     
Заключение – 9 стр.


6.     
Список используемой литературы – 10 стр.

Введение

Специфика логики как науки


Свое название логика получила от древнегреческого слова logos, означавшего, с одной стороны, слово, речь, а с другой мысль, смысл, разум.

Возникая в рамках античной философии как единой, не рас­члененной еще на отдельные науки совокупности знаний об окру­жающем мире, она уже тогда рассматривалась в качестве своеоб­разной, а именно рациональной, или умозрительной, формы фи­лософии в отличие от натурфилософии (философии природы) и этики (социальной философии).

В своем последующем развитии логика становилась все более сложным, многогранным феноменом духовной жизни человече­ства. Поэтому естественно, что в разные исторические периоды у разных мыслителей она получала различную оценку. Одни говори­ли о ней как о некоем техническом средстве практическом «ору­дии мысли» («Органон»). Другие усматривали в ней особое «искус­ство» искусство мыслить и рассуждать. Третьи находили в ней некий «регулятор» совокупность или свод правил, предписаний и норм мыслительной деятельности («Канон»). Были даже попыт­ки представлять ее как своеобразную «медицину» средство оздо­ровления рассудка.

Во всех подобных оценках, несомненно, содержится доля ис­тины. Но лишь доля. Главное, что характеризует логику, особен­но в настоящее время, это то, что она есть наука и притом весьма развитая и важная. И как всякая наука, она способна выполнять различные функции в обществе, а следовательно, обре­тать разнообразные «лики».

Какое же место занимает логика в системе наук?

Ныне существует великое множество самых разных отраслей научного знания. В зависимости от объекта исследования они, как известно, делятся прежде всего на науки о природе естественные науки (астрономия, физика, химия, биология и т. д.) и науки об обществе общественные науки (история, социология, юриди­ческие науки и др.).

По сравнению с ними своеобразие логики заключается в том, что ее объектом выступает мышление. Это наука о мышлении. Но если мы дадим логике только такое определение и поставим здесь точку, то допустим серьезную ошибку. Дело в том, что само мыш­ление, будучи сложнейшим явлением, выступает объектом изуче­ния не одной лишь логики, но и ряда других наук философии, психологии, физиологии высшей нервной деятельности человека, кибернетики, лингвистики...

В чем же специфика логики в сопоставлении именно с этими науками, изучающими мышление? Каков, иначе говоря, ее соб­ственный предмет исследования?

Философия, важнейшим разделом которой выступает теория познания, исследует мышление в целом. Она решает фундамен­тальный философский вопрос, связанный с отношением челове­ка, а следовательно, и его мышления к окружающему миру: как соотносится наше мышление с самим миром, можем ли мы в на­ших знаниях иметь верную мысленную картину о нем?

Психология изучает мышление как один из психических про­цессов наряду с эмоциями, волей и т. д. Она раскрывает взаимо­действие с ними мышления в ходе практической деятельности и научного познания, анализирует побудительные мотивы мысли­тельной деятельности человека, выявляет особенности мышления детей, взрослых, психически нормальных людей и лиц с теми или иными отклонениями в психике.

Физиология высшей нервной деятельности человека раскрыва­ет материальные, а именно физиологические процессы, протека­ющие в коре больших полушарий головного мозга человека, ис­следует закономерности этих процессов, их физико-химические и биологические механизмы.

Кибернетика выявляет общие закономерности управления и связи в живом организме, техническом устройстве, а следователь­но, и в мышлении человека, связанном прежде всего с его управ­ленческой деятельностью.

Лингвистика показывает неразрывную связь мышления с язы­ком, их единство и различие, их взаимодействие между собой. Она раскрывает способы выражения мыслей с помощью языковых средств.

Своеобразие же логики как науки о мышлении как раз и состо­ит в том, что она рассматривает этот общий для ряда наук объект под углом зрения его функций и структуры, т. е. с точки зрения роли и значения как средства познания действительности и в то же время с точки зрения составляющих его элементов и связей между ними. Это и есть собственный, специфический предмет логики.

Поэтому она определяется как наука о формах и законах пра­вильного мышления, ведущего к истине.

Основные законы мышления

Анализ наиболее общих форм мышления понятий, сужде­ний. умозаключений, доказательств будет неполным, если не рассмотреть еще основных законов мышления, действующих в них и пронизывающих всю их ткань.

Неосновные законы, о которых говорилось в соответствующих местах, закон обратного отношения между содержанием и объе­мом понятия, законы распределенности терминов в простых суж­дениях. законы соединения простых суждений в сложные и их вза­имоотношений между собой, законы различных типов, видов и разновидностей умозаключений и т. д. связаны лишь с опреде­ленной формой мышления и, следовательно, действуют в ограни­ченной сфере.

Важнейшая особенность основных законов мышления состоит в том, что они носят здесь универсальный характер, т. е. лежат в основе функционирования всего мышления в целом. Можно ска­зать без преувеличения, что без этих законов процесс мышления в целом был бы попросту невозможен. Ведь в них отражаются фунда­ментальные наиболее общие и глубокие свойства, связи и отно­шения объективного мира, постигаемого нашим мышлением. Вот почему они рассматриваются нами после анализа всех конкретных мыслительных форм.

Основные законы мышления, в свою очередь, подразделяются на два типа: формально-логические законы и законы диалектической логики, находящиеся в определенном соотношении между собой.

Изучение тех и других законов необходимо и важно для пони­мания сложных глубинных процессов, протекающих в мышлении естественным образом, независимо от нашего осознания их и воли, а также для использования этих законов в практике мыслительной деятельности.

Основные формально-логические законы

Основными в формальной логике считаются четыре законатождества, противоречия, исключенного третьего и достаточного основания. Они освящены многовековой традицией логической науки и играют важную роль в любом, в том числе современном. мышлении. Знание этих законов необходимо для использования их в практике как научного, так и повседневного мышления и, ко­нечно. в юридической практике.

Исходным в ряду формально-логических законов выступает закон тождества. С ним  органически связан закон противоречия.

Закон исключенного третьего

С законом противоречия, в свою очередь, тесно связан закон исключенного третьего.

Закон противоречия гласит, что ут­верждение и отрицание одного и того же не могут быть вместе истинными: одно из них непременно ложно. Но могут ли они быть одновременно ложными? Об этом закон противоречия ничего не говорит.

На этот вопрос отвечает закон исключенного третьего. В этом смысле его можно считать дополнением к закону противоречия (а следовательно, и к закону тождества). Его действием также об­условлена так или иначе определенность мышления, его последо­вательность, непротиворечивость. Но он обладает относительной самостоятельностью, имеет свою сферу действия и свое предна­значение в мышлении.

Объективный источник и существо закона исключенного тре­тьего. Подобно законам тождества и противоречия, этот закон имеет объективный источник. В нем отражается та же качественная опре­деленность предметов и явлений действительного мира, сохраня­ющаяся до поры до времени в процессе их изменения и развития. А это означает, что нечто существует или не существует, входит в какой-то класс предметов или не входит, ему что-то присуще или не присуще и т. д.

Поэтому в той мере, в какой мир альтернативен, раздвоен на «наличие отсутствие», мышление, если оно верно отражает его. не может не быть тоже альтернативным. В нем неизбежно действует закон исключенного третьего.

Открытый Аристотелем, этот закон гласит: «Не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать»'. И в другом месте: «О чем бы то ни было истинно или утверждение, или отрицание...»2

Обосновывая неизбежность действия этого закона и невозмож­ность его отрицания, Аристотель приводил ряд (семь!) доводов в его пользу. В более позднее время он получил название закона ис­ключенного третьего, хотя формулировки ему давались самые раз­личные. Наиболее обшей из них является следующая: два противо­речащих высказывания об одном и том же предмете не могут быть вместе ложными: одно из них по необходимости истинно. Формула этого закона: «А или не-А».

Чтобы понять действие закона, приведем две пары несовмес­тимых высказываний:

1) «Байкал глубокий» «Байкал мелкий»;

2) «Байкал глубокий» «Байкал неглубокий».

Обратим внимание, что в первой паре предикатами выступают противоположные понятия («глубокий» «мелкий»), а во вто­рой противоречащие понятия («глубокий» «неглубокий»). Меж­ду ними, как мы помним, имеется не только сходство, но и разли­чие. Противоположные отрицают друг друга, но не исчерпывают объема родового понятия. Спрашивается: могут ли два высказыва­ния с противоположными предикатами быть одновременно истин­ными? Нет. Об этом говорит закон противоречия. Но могут ли они быть одновременно ложными? Да, потому что не исчерпывают всех возможных вариантов. Может статься, что «Байкал средней глуби­ны». Закон исключенного третьего здесь не действует.

Что же касается противоречащих понятий («глубокий» «не­глубокий»), то они не только отрицают друг друга, но и исчерпы­вают объем родового понятия. Возникают те же вопросы. Могут ли оба суждения с подобными предикатами быть одновременно ис­тинными? Нет. Это опять-таки следует из закона противоречия. А могут ли они быть одновременно ложными? Вот тут-то и «зарыта собака». В отличие от первой пары они не могут быть и одновре­менно ложными. Ведь третьего здесь попросту нет, так как озеро либо глубокое, либо неглубокое. Одно из них непременно истинно. Эта закономерность, свойственная подобным суждениям, и на­шла свое отражение в законе исключенного третьего.

Теперь нетрудно понять, какова сфера действия этого закона. Она тоже весьма широка. В общей форме можно сказать так: не всюду там, где действует закон противоречия, действует и закон исключенного третьего. Но всюду, где он проявляет свою силу, проявляется и закон противоречия.

Как и закон противоречия, закон исключенного третьегорезультат обобщения практики применения суждений. Но если в законе противоречия выражаются их отношения по истинности, то в законе исключенного третьего по ложности. Он действует в отношениях между противоречащими (контрадикторными) суж­дениями (А О, Е — I).Но он не действует во взаимоотношениях между противопо­ложными (контрарными) суждениями (А Е). хотя закон проти­воречия действует и здесь: они не могут быть вместе истинными. но могут быть одновремен но ложными. Действие закона исключен­ного третьего обнаруживается и в сложных суждениях (например. в строгой дизъюнкции, когда составляющие ее суждения взаимно исключают друг друга, а следовательно, не могут быть вместе не только истинными, но и ложными).

Закон исключенного третьего проявляется также в умозаключе­ниях и доказательстве. Например, он лежит в основе непосред­ственных умозаключений через превращение суждений и через от­ношение противоречащих (контрадикторных) суждений в логи­ческом квадрате. Без его действия было бы невозможно косвенное доказательство. Устанавливая ложность какого-либо тезиса, мы тем самым доказываем истинность противоречащего ему тезиса, по­скольку оба они не могут быть вместе ложными.

Требования закона исключенного третьего и их нарушения. На основе этого закона можно сформулировать определенные требо­вания к мышлению. Чтобы понять их принципиальный смысл, вспомним историю с буридановым ослом. Как гласит легенда, он сдох с голоду, ибо так и не смог выбрать одну из двух совершенно одинаковых охапок сена. Перед человеком нередко тоже встает ди­лемма, но уже иная: выбирать не из одинаковых, а из взаимоотри­цающих высказываний. Закон исключенного третьего как раз и предъявляет требование выбора одного из двух по принципу «или или», tertium non datur (третьего не дано). Он означает, что при решении альтернативного вопроса нельзя уклоняться от опреде­ленного ответа; нельзя искать что-то промежуточное, среднее, третье.

С такого рода альтернативами человек сталкивается довольно часто. Еще в Древнем Риме родилась крылатая фраза: «Aut Caesar, aut nihil» (буквально «Или Цезарь, или ничто»), которую иногда употребляют в обобщенном смысле: «Все или ничего». Подобную интеллектуальную ситуацию гениально выразил У. Шекспир, вло­жив в уста Гамлета слова, ставшие тоже крылатыми: «Быгь или не быть?» У А. Пушкина мы находим: «Она меня зовет: поеду или нет?» Ясно, что из этих вариантов приходится выбирать: ничего третьего нет.

И в современных условиях возникают альтернативы, требую­щие однозначного выбора. Вот лишь несколько примеров из газет:

«Либо общими усилиями будет спасен весь мир, либо погибнет вся цивилизация»; «Или дальнейшее утверждение политической целесообразности, или утверждение закона в России».

Нарушение требования выбора проявляется в разных формах. Иногда сам вопрос сформулирован неальтернативно. С давних пор до нас дошла шутка: «Перестал ли ты бить своего отца?» Как пра­вильно ответить? Если «перестал», значит, бил. Если же «не пере­стал», значит, продолжаешь бить. Тут как раз возможно третье:

«Я его не бил и не бью». Или на вопрос: «Любишь ли ты его?» нередко нельзя ответить по формуле «или или». Ведь можно кого-то любить, можно презирать или ненавидеть, а можно просто про­являть безразличие или равнодушие.

Но если вопрос сформулирован правильно, то уклонение от определенного ответа на него, поиски чего-то третьего будут ошиб­кой. Она свойственна людям нерешительным, неуверенным в себе или просто беспринципным.

Значение закона исключенного третьего. Конечно, как и закон противоречия, этот закон не может точно указать, какое именно из двух противоречащих суждений истинно. Но его значение состо­ит в том, что он устанавливает для нас вполне определенные ин­теллектуальные границы, в которых возможен поиск истины. Эта истина заключена в одном из двух отрицающих друг друга выска­зываний. За этими пределами искать ее не имеет смысла. Сам же выбор одного из суждений в качестве истинного обеспечивается средствами той или иной науки и практики.

В юриди­ческом отношении закон исключения третьего праздну­ет свой триумф. На принципе «или или» основана, по существу, вся юридическая практика. Еще в афинском суде было установлено двойное голосование судей: первым определялась виновность или невиновность, а вторым мера наказания. Этим достигалась боль­шая точность в рассмотрении дел.

И в настоящее время суды постоянно сталкиваются с альтер­нативами. Так, в уголовном судопроизводстве имело место со­бытие преступления или не имело, находился на месте преступле­ния подозреваемый или не находился, признает он себя виновным или не признает, виновен обвиняемый на самом деле или не вино­вен, правилен приговор суда или неправилен.

Аналогично и в гражданских делах. Например, если ответчик не признает своего отцовства, то суд может назначить судебно-медицинскую экспертизу, и эксперт либо исключает то, что ребе­нок мог родиться от данного человека, либо допускает такую воз­можность. Правда, подобное заключение используется в качестве доказательства лишь в совокупности с другими. Но само решение суда остается однозначным.

В законодательной практике решаются свои альтернативные вопросы. Так, на заседании Государственной Думы либо есть кво­рум, либо его нет, вопрос вносится в повестку дня или не вносит­ся, то или иное решение принято или не принято. Вспомним элек­тронное табло в зале заседаний депутатов, которое мы не раз на­блюдали по телевидению и на котором всякий раз однозначно высвечивались результаты голосования: либо «решение принято», либо «решение не принято».

Закон достаточного основания

Важное место среди формально-логических законов мышления занимает закон достаточного основания. Он тоже находится в не­разрывной связи с остальными. И действительно, если мысль об­ладает определенностью (закон тождества), то это открывает воз­можность для установления ее истинности или ложности во взаи­моотношениях с другими мыслями (закон противоречия и закон исключенного третьего). Само же установление истинности или ложности мысли невозможно без соответствующего обоснования.

Отсюда действие закона достаточного основания. Им обус­ловлена еще одна коренная черта правильного мышления наряду с определенностью и последовательностью, непротиворечивостьюего обоснованность, доказательность.

Объективные предпосылки и смысл закона достаточного основа­ния. Качественно определенные предметы, известным образом со­относящиеся между собой (о чем уже говорилось выше), так или иначе возникают из других предметов и сами, в свою очередь, порождают третьи, изменяются и развиваются в процессе взаимо­действия между собой. Следовательно, все в окружающем мире имеет свои основания в другом.

Такая объективно существующая универсальная зависимость одних предметов от других и служит важнейшей предпосылкой воз­никновения и функционирования в нашем мышлении закона дос­таточного основания. Этот закон был открыт и впервые сформули­рован Г. Лейбницем. Он писал: «Ни одно явление не может ока­заться истинным или действительным, ни одно утверждение справедливым без достаточного основания, почему именно дело обстоит так, а не иначе...»

Правда, у Лейбница он дан как универсальный закон и бытия, и познания закон причинности. Применительно лишь к мышле­нию ему можно дать следующую формулировку: ни одно суждение не может быть признано истинным без достаточного основания. Отсюда название самого закона. Но почему идет речь именно о «достаточном» основании? Достаточными являются такие факти­ческие и теоретические основания, из которых данное суждение сле­дует с логической необходимостью. Примерная формула закона:

«А истинно, потому что есть достаточное основание В».

Логическое основание неразрывно связано с объективным, но в то же время и отлично от него. Объективным основанием служит причина, а результат ее действия следствие. Логическим же ос­нованием может выступать ссылка как на причину, так и на след­ствие. Классический пример. Дождь прошел. Это объективное осно­вание (причина) того, что крыши домов мокрые (следствие), но не наоборот. Логических же оснований в рассуждении об этой при­чинно-следственной связи может быть два: «Крыши домов мок­рые, потому что прошел дождь» и «Прошел дождь, потому что крыши домов мокрые». Почему это возможно? Потому что причи­на и следствие связаны между собой необходимым образом. Если есть причина, то есть и следствие, и наоборот: если есть следствие, то есть и причина. Надо только учитывать фактор «множественнос­ти причин» или «множественности следствий» (см. об этом выше),

Какова сфера действия закона достаточного основания? Если закон тождества явился обобщением прежде всего практики опе­рирования понятиями, а закон противоречия и исключенного тре­тьего практики функционирования суждений, то закон доста­точного основания есть результат обобщения практики получения выводного знания. В нем выражено отношение одних истинные мыслей к другим отношение логического следования, обеспе­чивающего в конечном счете их соответствие действительности. Этот закон означает, что в правильном рассуждении вывод всегда достаточно обоснован.

Следовательно, в сферу действия этого закона входят прежде всего умозаключения. Когда, например, из двух посылок: «Все жи­вое смертно» и «Люди живые существа» мы делаем вывод, что «Все люди смертны». то это означает: «Все люди смертны» пото­му, что «Все живое смертно». Подведение того или иного предмета мысли под общее понятие служит достаточным основанием для распространения на него всех тех свойств, которые присущи всему классу предметов, мыслимому в этом понятии. Вспомним аксиому простого категорического силлогизма: Dictum de omni et de nullo.

В сфере действия закона достаточного основания находятся также доказательства. Уже само их существование есть показатель того, что такой закон существует. Кроме того, одно из важнейших пра­вил доказательства правило не только необходимости, но и до­статочности оснований прямо обусловлено действием этого за­кона. Например, существует объективная связь между ясным мыш­лением и ясным изложением. Поэтому если мы хотим обосновать, почему человек ясно излагает свои мысли, то можем сослаться на то, что он ясно мыслит. Это достаточное основание. Впрочем, можно сказать и наоборот: «Он ясно мыслит, потому что ясно излагает». Это тоже достаточное логическое основание.

Требования, вытекающие из закона достаточного основания, и ошибки, связанные с их нарушением. Будучи объективным, закон достаточного основания предъявляет к нашему мышлению важ­ные требования: всякая истинная мысль должна быть обоснован­ной, или: нельзя признать высказывание истинным, если для него нет достаточных оснований. Иными словами, ничего нельзя при­нимать на веру: надо основываться на достоверных фактах и ранее доказанных положениях. Этот закон направлен против бессвязных, хаотичных, бездоказательных рассуждении; голого, необоснован­ного теоретизирования; неоправданных, неубедительных выводов. Он враг всяких догм, пустых верований, суеверий и предрассудков.

Важнейшей логической ошибкой, связанной с нарушением требований закона достаточного основания, выступает «поп sequitur» («не следует») ошибка «мнимого следования». Она обнаружива­ется там, где нет достаточной логической связи между посылками и заключением, между тезисом и основаниями, доводами и выво­дами.

Образцом подобной нелогичности служит рассуждение фило­софов-лилипутов в произведении Джонатана Свифта «Путешествие Самюэля Гулливера»: «Вы утверждаете, правда, что на свете суще­ствуют другие королевства и государства, где живут такие же ги­ганты, как вы. Однако наши философы сильно сомневаются в этом... Ведь не подлежит никакому сомнению, что сто человек вашего роста могут за самое короткое время истребить все плоды и весь скот во владениях его величества. Кроме того, у нас есть летописи. Они заключают в себе описание событий за время в шесть тысяч лун, но ни разу не упоминают ни о каких других странах, кроме двух великих империй Лилипутии и Блефуску».

Здесь снова вывод не вяжется с доводами. Если в летописях нет упоминания о каком-либо событии, то это еще не значит, что его не было на самом деле. Существование события не связано необхо­димым образом с летописями.

Или  клас­сический пример с Катюшей Масловой из романа Л. Толстого «Вос­кресение» В связи с убийством (отравлением) куп­ца Смелькова Маслова была приговорена к каторжным работам и сделано это вследствие не только судебной, но и логической ошибки. Ею как раз и была ошибка под названием поп sequitur («не следует»). Если бы в решении суда присяжных было записано: «Виновна, но без умысла ограбления и без намерения лишить жизни», Маслова была бы оправдана.

Ошибка «мнимого следования» иногда сознательно допускает­ся для создания комичной ситуации, шутки и т. п. Мы находим , например, у бессмертного Козьмы Пруткова: «Я поэт. поэт даро­витый! Я в этом убедился; убедился, читая других: если они по­эты, так и я тоже». Или: «Смерть для того поставлена в конце жиз­ни, чтобы удобнее к ней приготовиться».

Значение закона достаточного основания. Этот закон, разумеет­ся, ничего не говорит о том, какие конкретно основания для дан­ного вывода являются достаточными. Он только дисциплинирует наше мышление, направляя его на поиск таких оснований, на обес­печение обоснованности вывода.

Это особенно важно в научном познании, прежде всего в тео­ретических науках, где велика роль выводного знания. Вот почему Г. Лейбниц придавал фундаментальное значение не только прин­ципу противоречия, но и принципу достаточного основания. Он имеет большое значение, в частности, в связи с коренным вопро­сом теории познания о критерии истинности наших знаний. Ус­тановлено, что таким критерием служит прежде всего обществен­ная практика материально-производственная, общественно-политическая деятельность, практика научных наблюдений и экс­периментов. Именно она позволяет надежно отделять истинные знания от ложных. Однако далеко не все знания возможно и необ­ходимо проверять непосредственно на практике. Если мы знаем, что существует закон всемирного тяготения, то нет надобности каждый раз проверять, упадет предмет или нет, когда мы его вы­пустим из рук. Это можно сделать и логическим путем: вывести одно знание из другого, уже проверенного на практике и получив­шего статус истинного. Следовательно, наряду с коренным, прак­тическим критерием истинности наших знаний есть и другойпроизводный, логический критерий. Весь вопрос только в том, достаточны ли логические основания для того или иного вывода. На правильное решение этого вопроса и ориентирует нас закон достаточного основания.

В практической деятельности тоже важно руководствоваться этим законом. Так, известный русский социолог Питирим Соро­кин (с 1922 г. в эмиграции), выступая против извращений в строительстве социализма в нашей стране, заявлял: «Можно и дол­жно звать всех к производительной работе по возрождению стра­ны, но ниоткуда не следует, что эта работа может и должна совер­шаться только по штампам и циркулярам в качестве агентов влас­ти и чиновников, или обратно должна быть непременно работой. низвергающей власть».Таким образом, автор отмечал известное отсутствие последо­вательности в определенных тогдашних практических действиях власти в стране. И позднее не было достаточных оснований для того, чтобы в экономике страны десятилетиями игнорировать ми­ровой опыт развития рыночных отношений. Но и в настоящее вре­мя, когда произошла смена власти, многие ее действия представ­ляются тоже недостаточно обоснованными, правда, уже в ином социальном смысле. Так, нередко опыт предшествующего разви­тия страны огульно отрицается лишь на том основании, что он в конечном счете не удался. Однако это еще не достаточное основа­ние для подобного нигилизма.

Закон достаточного основания имеет прямое отношение к юри­дической практике. В законодательстве довольно широко распрост­ранено само понятие «достаточные основания». Так, в уголовном процессе по отношению к обвиняемому (а в исключительных слу­чаях к подозреваемому) законом предусмотрены меры пресечения при наличии для этого достаточных оснований. Причем сами эти основания раскрываются.

В гражданском законодательстве говорится, что гражданские права и обязанности возникают из предусмотренных законом ос­нований.

В судебной практике дело может стать предметом судебного раз­бирательства, если для этого есть достаточные основания. Приго­вор или решение суда должны быть мотивированными, т. е. обосно­ванными.

В повседневной речи, говоря о том, что многие законы не дей­ствуют, мы приводим в качестве основания то, что нет процедуры их использования и т. д.


Заключение


Рассмотренные выше основные формально-логические законы мышления открыты традиционной логикой. Как относится к ним символическая логика? Она основывается на них в своих построе­ниях и процедурах, но в целях решения собственных специфичес­ких задач вносит в них необходимые уточнения и дает им свою символику. Так, раскрывая их единство в определенном отношении, она рассматривает их в качестве тождественно-истинных формул. Что это значит? Многие логические формулы, используемые в символической логике (логике высказываний), оказываются при одних логических значениях своих переменных истинными, а при других ложными. Тождественно истинные формулы тем и отли­чаются, что они имеют логическое значение «истина» при всех логических значениях своих переменных. Истинность таких фор­мул обусловлена их логической структурой. Поэтому они называ­ются еще логически истинными формулами. В конечном счете их истинность определяется тем, что в их структуре отражаются наи­более глубокие и общие связи самого объективного мира. Посред­ством этих формул и выражаются законы логики.

Так, закон тождества выражается логической формулой А ≡ А (А равносильно А) или А->А («Если А, то А»).

Закон противоречия выражается формулой^ А) («Невер­но, что А и не-А).

Закон исключенного третьего A v А (А или не-А).

Считается, что закон достаточного основания символически выразить нельзя, так как это исключительно содержательный закон. Приведем пример толкования подобных формул. Так, сложные высказывания типа: «Закон принят, или закон не принят», «Реше­ние суда правильное, или решение суда неправильное», имея фор­мулу AvА (закон исключенного третьего), истинны независимо от того, истинны или ложны образующие их элементарные сужде­ния. Вот таблица истинности этой формулы:



Наряду с тождественно-истинными формулами есть еще тож­дественно-ложные формулы. Ими выражаются логические проти­воречия.

Благодаря табличному способу символическая логика (логика высказываний) в состоянии эффективно выявлять как тождествен­но-истинные формулы, так и тождественно-ложные формулызаконы логики и логические противоречия. В этом ее громадный шаг вперед по сравнению с традиционной логикой.

Список используемой литературы


1.      Логика. Учеб. Под ред. Иванова Е.И., Москва, 2000 г.

2.      Аристотель. Соч. т.1 с. 141, т.2 с.257.

3.      Лейбниц Г. Избранные философские сочинения. М. 1968 с. 377.

4.      Философские науки 1992 №1 с.7



1. Реферат на тему Epic Of Gilgamesh Enkidu Vs.
2. Реферат Основания и последствия признания брака недействительным
3. Доклад Рутульцы
4. Курсовая Межбюджетные отношения и модели бюджетного федерализма понятие и виды
5. Контрольная работа на тему Безопасность жизнедеятельности 5
6. Реферат Основные тенденции развития европейской культуры XX века
7. Реферат на тему ProChoice Among Women Essay Research Paper An
8. Реферат Предмет, метод и задачи статистики строительства
9. Контрольная работа Исследование рупорных антенн
10. Лабораторная работа Определение диаметра молекул