Реферат Автоматы с магазинной памятью
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
АВТОМАТЫ С МАГАЗИННОЙ ПАМЯТЬЮ
Автоматы и преобразователи с магазинной памятью играют важную роль при построении автоматно-лингвистических моделей различного назначения, связанных с использованием бесконтекстных (контекстно-свободных) языков. В частности, такие устройства используются в большинстве работающих программ для синтаксического анализа программ, написанных на различных языках программирования, которые во многих случаях можно рассматривать как бесконтекстные.
В отличие от конечных автоматов и преобразователей,
автоматы с магазинной памятью снабжены дополнительной магазинной памятью (рабочей лентой).
На рис. 1
|
такой преобразователь. Конечное управляющее устройство снабжается дополнительной управляющей головкой, всегда указывающей на
верхнюю ячейку магазинной памяти; за один такт работы автомата (преобразователя) управляющая головка может произвести следующие движения:
1) стереть символ из верхней ячейки (при этом все символы, находящиеся на рабочей ленте, перемещаются на одну ячейку вверх);
2) стереть символ из верхней ячейки и записать на рабочую ленту непустую цепочку символов (при этом содержимое
рабочей ленты сдвигается вниз ровно настолько, какова длина
с записываемой цепочки).
Таким образом, устройство магазинной памяти можно сравнить с устройством магазина боевого автомата: когда в него вкладывается патрон, те, которые уже были внутри, проталкиваются вниз; достать можно только патрон, вложенный последним.
Формально детерминированный магазинный автомат определяется как следующая совокупность объектов:
M = (V, Q, VM,
δ, q0, z0, F),
где V, Q, q0 Є Q, F определяются так же, как и для конечного автомата;
VM = {z0, z1,…,zp-1} — алфавит магазинных символов автомата;
δ — функция, отображающая множество Q
X
(
V
U { ε }) X
VM
в множество Q
X
VM, где е — пустая цепочка;
z0 Є VM — так называемый граничный маркер, т. е. символ,
первым появляющийся в магазинной памяти.
Недетерминированный магазинный автомат отличается от детерминированного только тем, что функция δ отображает множество Q
X
(
V
U { ε }) X
VM. в множество конечных подмножеств Q
x
VM
Как и в случае конечных автоматов, преобразователи с магазинной памятью отличаются от автоматов с магазинной памятью наличием выходной ленты.
Далее будем рассматривать только недетерминированные магазинные автоматы.
Рассмотрим интерпретацию функции δ для такого автомата. Эту функцию можно представить совокупностью команд вида
(q, a, z)→(q1, γ1),…,(qm, γm),
где q, q1,…qm Є Q, a Є V, z Є VM, γ1,…,γm Є V*m
При этом считается, что если на входе читающей головки авто
мата находится символ а, автомат находится в состоянии q, а верхний символ рабочей ленты z, то автомат может перейти к состоянию qi, записав при этом на рабочую ленту цепочку γi(1 ≤ i ≤ m)
вместо символа z, передвинуть входную головку на один символ
вправо так, как это показано на рис. 1, и перейти в состояние qi. Крайний левый символ γi должен при этом оказаться в верхней
ячейке магазина. Команда (q
,
e
,
z
)→(
q
1
,
γ
1
),…, (qm, γm) означает,
что независимо от входного символа и, не передвигая входной го- +
ловки, автомат перейдет в состояние qi, заменив символ z магазина
на цепочку γi(1 ≤ i ≤
m
). •
Ситуацией магазинного автомата называется пара (q
,
γ
), где
q
Є
Q, γ
Є
V
*
m. Между ситуациями магазинного автомата (q
,
γ
) и
(
q
’,
γ
’), устанавливается отношение, обозначаемое символом ├, если среди команд найдется такая, что
(q, a, z)→(q1, γ1),…,(qm, γm),
причем γ = zβ, γ’ = γiβ q' = qi для некоторого 1 ≤ i ≤ m (z Є
Vm,
β
Є
V*m ).
Говорят, что магазинный автомат переходит из состояния (q
,
γ
) в состояние (q
’,
γ
’) и обозначают это следующим образом:
a: (q, γ)├ (q’, γ’).
Вводится и такое обозначение:
a1...an: (q, γ)├
*
(q’, γ’),
если справедливо, что
ai: (qi, γi)├ (qi+1, γi+1), 1 ≤ i ≤ m
где
ai
Є
V
,
γ
1
=
γ
,
γ
2
,…,
γn
+1
=
γ
’ Є
V
*
m
q
1
=
q
,
q
2
,…,
qn
+1
=
q
’ Є
Q
Существует два способа определения языка, допускаемого магазинным автоматом. Согласно первому способу считается, что входная цепочка α Є V
* принадлежит языку L
1
(
M
) тогда, когда после просмотра последнего символа, входящего в эту цепочку,
в магазине автомата М будет находиться пустая цепочка ε. Другими словами,
L1 (M) = {
α
|
α
: (q0, z0) ├
*
(q,
ε
)}
где q Є Q.
Согласно второму способу считается, что входная цепочка принадлежит языку L
2
(
M
) тогда, когда после просмотра последнего символа, входящего в эту цепочку, автомат М окажется в одном из своих заключительных состояний q
f
Є
F. Другими словами,
L
2
(
M
) = { α | α: (
q
0
,
z
0
) ├
*
(
qf
,
γ
)}
где γ
Є
V
*
m
,
qf
Є
F
Доказано, что множество языков, допускаемых произвольными магазинными автоматами согласно первому способу, совпадает с множеством языков, допускаемых согласно второму способу.
Доказано также, что если L
(
G
2
) — бесконтекстный язык, порождаемый Грамматикой G2 = (Vx
,
VT
,
Р,
S
), являющейся нормальной формой Грейбах, произвольной бесконтекстной грамматики G, то существует недетерминированный магазинный автомат М такой, что L
1
(
M
) =
L
(
G
2
). При этом
M = (V, Q, Vm , δ, q0, z0,
Где V=VT; Q={q0}; VM=VN; z0=S
а для каждого правила G
2 вида
A→a
α
, a
Є
VT, a
Є
V*n
строится команда отображения δ:
(q0, a, A)→(q0, a)
Apia логично для любого недетерминированного магазинного автомата М, допускающего язык L
1
(
M
), можно построить бесконтекстную грамматику G такую, что L
(
G
) =
L
1
(
M
).
Если для конечных автоматов детерминированные и недетерминированные модели эквивалентны по отношению к классу допускаемых языков, то этого нельзя сказать для магазинных автоматов. Детерминированные автоматы с магазинной памятью допускают лишь некоторое подмножество бесконтекстных языков, которые называют детерминированными бесконтекстными языками.
Список использованной литературы
КУЗИН Л.Т «Основы кибернетики» Т.2
УКРАИНСКИЙ ГОСУДАРСТВЕННЫЙ
ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ
Р Е Ф Е Р А Т
По дискретной математике на тему:
«Автоматы с магазинной памятью»
Подготовил студент гр. 1киб-30
Кирчатов Роман Романович
Преподаватель
Бразинская Светлана Викторовна
ДНЕПРОПЕТРОВСК, 2002