Реферат

Реферат Интеграл Пуассона

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025



Интеграл Пуассона.
Пусть ¦(x) , g(x) , xÎR1суммируемые на [-p, p] , 2p- периодические, комплекснозначные функции. Через   f
*
g(x)
 будем обозначать свертку

                  f*
g(x)
 =dt  

Из теоремы  Фубини легко следует, что свертка суммируемых функций также суммируема на [-p,p] и

                    cn ( f*g ) = cn ( f )× cn ( g ) ,                  n = 0, ±1 , ±2 , ...             ( 1 )
где { cn ( f )} -- коэффициенты Фурье функции  f ( x ) :

                             cn = -i n tdt ,                          n = 0, ±1, ±2,¼       

Пусть  ¦ Î L1 (-p, p ) . Рассмотрим при  0 £ r < 1  функцию

                   ¦r ( x ) = n ( f ) r| n | ei n x   ,            x Î [ -p, p ]  ,                  ( 2 )

где ряд в правой части равенства (2) сходится равномерно по х для любого фиксированного  r ,  0 £ r < 1 . Коэффициенты Фурье функции ¦r (х) равны

cn ( fr ) = cn × r| n  | ,    n = 0 , ±1, ±2, ¼ , а это согласно (1) значит, что ¦r ( x ) можно представить в виде свертки :

                          ¦r ( x ) =  ,                                                       ( 3 )

где

                           ,                                   t Î [ -p, p ] .                  ( 4 )

          Функция двух переменных  Рr (t) ,   0 £  r <1 ,  t Î [ -p, p ] , называется ядром Пуассона ,  а  интеграл (3)  --  интегралом Пуассона .



Следовательно,

                     Pr ( t ) =      ,    0 £ r < 1 ,   t Î [ -p, p] .                     ( 5 )  

Если  ¦Î L1 ( -p, p )  - действительная функция , то , учитывая , что

c-n  ( f ) =  `cn( f ) , n = 0, ±1, ±2,¼, из соотношения (2) мы получим :
fr ( x ) =
=  ,                                                                      ( 6 )

где

                          F ( z ) = c0 ( f ) + 2             ( z = reix  )                     ( 7 )

-         аналитическая в единичном круге функция . Равенство (6) показывает, что для любой действительной функции ¦Î L1( -p, p ) интегралом Пуассона (3) определяется гармоническая в единичном круге функция

                  u ( z ) = ¦r (eix )  , z = reix    ,  0 £  r <1  ,   x Î [ -p, p ] .

При этом гармонически сопряженная  с  u (z)  функция  v (z)  c  v (0) = 0  задается формулой

                  v (z) = Im F (z) =    .                                     ( 8 )

Утверждение1.

Пусть  u (z) - гармоническая ( или аналитическая ) в круге   | z | < 1+e   ( e>0 ) функция  и ¦ (x) = u (eix) , xÎ[ -p, p ] . Тогда

                  u (z) =                 ( z = reix  ,    | z | < 1 )              ( 10 ).
Так как  ядро Пуассона  Pr (t) - действительная функция, то равенство (10) достаточно проверить в случае, когда u (z) - аналитическая функция:

                                              =,          | z | < 1+ e .

Но тогда

                                       

и равенство (10) сразу следует из (2) и (3).
Прежде чем перейти к изучению  поведения функции ¦r (x) при r®1 , отметим некоторые свойства ядра Пуассона:

а)  ;

б)  ;

в) для любого d>0

      

Соотношения а) и в) сразу следуют из формулы (5), а для доказательства б) достаточно положить в (2) и (3)  ¦ (х) º 1.

Теорема 1.

Для произвольной (комплекснозначной) функции ( -p, p ) , 1 £ p < ¥ , имеет место равенство

                                            ;

если же ¦ (x) непрерывна на  [ -p, p ]  и  ¦ (-p) = ¦ (p) , то

                                          .
Доказательство.

В силу (3) и свойства б) ядра Пуассона

                                                         ( 12 )

Для любой функции  , пользуясь неравенством Гельдера и положительностью ядра Пуассона , находим





.

Следовательно,

                            .

Для данного e > 0  найдем  d = d (e) такое, что  . Тогда для  r  , достаточно близких к единице, мы получим  оценку

.

Аналогично второе неравенство вытекает из неравенства

                            .

Теорема 1 доказана.
Дадим определения понятий "максимальная функция" и "оператор слабого типа", которые понадобятся нам в ходе доказательства следующей теоремы.

Определение1.

Пусть функция  суммируема на любом интервале (-А, А),  А > 0 . Максимальной функцией для функции   называется функция

                         

где  супремум берется по всем интервалам   I  , содержащим точку х.

Определение 2.

Оператор  называется оператором слабого типа (р,р) , если для любого y > 0

  .
Теорема 2 (Фату).

Пусть - комплекснозначная функция из  . Тогда

                                            для  п.в.  .

Доказательство.

Покажем, что  для   и 

                                                       ,                                                ( 13 )

где  С - абсолютная константа , а  M ( f, x ) - максимальная функция для  f (x) [*]. Для этой цели  используем легко выводимую из (5) оценку

             

(К - абсолютная константа).

Пусть  -  такое число, что

.

Тогда  для 







.
Неравенство (13) доказано. Используя затем слабый тип (1,1) оператора  , найдем такую последовательность функций  ,что

,

                                                  ( 14 )

   для п.в. .
Согласно (13) при   xÎ (-2p,2p)





Учитывая , что по теореме 1   для каждого xÎ [-p, p]  и (14)

Из последней оценки  получим
  при  n®¥.

Теорема 2 доказана.

Замечание.

Используя вместо (13)  более сильное неравенство (59), которое мы докажем позже, можно показать, что для п.в. xÎ [-p, p]   ,  когда точка reit  стремится к  eix  по некасательному к окружности    пути.

 





[*] Мы считаем , что f (x) продолжена с сохранением периодичности на отрезок [-2p,2p]  (т.е. 
f (x) = f (y) ,  если x,y Î [-2p,2p]  и  x-y=2p)   и   f (x) = 0  ,    если   |x| > 2p .

1. Диплом Химия и технология штатных бризантных взрывчатых веществ
2. Контрольная_работа на тему Использование полезных микроорганизмов
3. Реферат на тему The War Of Freedom Of Expression Essay
4. Реферат Мотивация и стимулирование деятельности человека
5. Реферат на тему History Of Computer Industry Essay Research Paper
6. Изложение Дени Верас. История севарамбов
7. Реферат Естественные ограничения на глобальную энергетическую систему
8. Реферат Структура и состав современного культурологического знания 2
9. Реферат Половое воспитание детей
10. Реферат Развитие теории и практики менеджмента 2