Реферат Определение законов распределения случайных величин и их числовых характеристик на основе опытны
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Самарский государственный аэрокосмический университет
им. академика С.П. Королева
Кафедра прикладной математики
Расчетно-графическая работ по курсу «Теория вероятностей и математическая статистика»
Тема работы: «
Определение законов распределения случайных величин и их числовых характеристик на основе опытных данных. Проверка статистических гипотез»
Вариант № 15
Выполнил студент группы № 625
Евгений В. Репекто
Самара - 2002
Задание на расчетно-графическую работу
Дан протокол содержащий 120 пронумерованных значений:
№ | | № | | № | | № | |
1 | 4 | 31 | 10 | 61 | 20 | 91 | 44 |
2 | 19 | 32 | 25 | 62 | 16 | 92 | 12 |
3 | 25 | 33 | 38 | 63 | 15 | 93 | 16 |
4 | -4 | 34 | 1 | 64 | 32 | 94 | 9 |
5 | 58 | 35 | 19 | 65 | 52 | 95 | 12 |
6 | 34 | 36 | 55 | 66 | -5 | 96 | 40 |
7 | 32 | 37 | 9 | 67 | 21 | 97 | 17 |
8 | 36 | 38 | 11 | 68 | 30 | 98 | 10 |
9 | 37 | 39 | 6 | 69 | 27 | 99 | 31 |
10 | 4 | 40 | 31 | 70 | 12 | 100 | 49 |
11 | 24 | 41 | 17 | 71 | 19 | 101 | 25 |
12 | 3 | 42 | -6 | 72 | 1 | 102 | 33 |
13 | 48 | 43 | 14 | 73 | 23 | 103 | 26 |
14 | 36 | 44 | 9 | 74 | 7 | 104 | 19 |
15 | 27 | 45 | 13 | 75 | 4 | 105 | 25 |
16 | 20 | 46 | 25 | 76 | 16 | 106 | 34 |
17 | 1 | 47 | 11 | 77 | 38 | 107 | 10 |
18 | 39 | 48 | 18 | 78 | 40 | 108 | 24 |
19 | 11 | 49 | 2 | 79 | 30 | 109 | 2 |
20 | 16 | 50 | 29 | 80 | 14 | 110 | 38 |
21 | 49 | 51 | 20 | 81 | 51 | 111 | 30 |
22 | 25 | 52 | 48 | 82 | 17 | 112 | 10 |
23 | 26 | 53 | 16 | 83 | 25 | 113 | 39 |
24 | 30 | 54 | 29 | 84 | 34 | 114 | 1 |
25 | 19 | 55 | 12 | 85 | 23 | 115 | 40 |
26 | 32 | 56 | -3 | 86 | 20 | 116 | 7 |
27 | 3 | 57 | 16 | 87 | 9 | 117 | 26 |
28 | 40 | 58 | 41 | 88 | 29 | 118 | 36 |
29 | 45 | 59 | 19 | 89 | 18 | 119 | 22 |
30 | 35 | 60 | 0 | 90 | 46 | 120 | 28 |
Все эти протокольные значения считаются значениями выборки
некоторой случайной величины
другой случайной величины
Требуется:
1.
Построить вариационные ряды для случайных величин
2.
Произведя группировку элементов каждой выборки (используя формулу Стерджеса) построить статистические ряды распределения случайных величин
Образец заполнения таблицы для статистического ряда.
№ пр-ка | Границы промежутка | Середина промежутка | Количество элементов выборки в промежутке | Частота для промежутка |
1 | | | | |
2 | | | | |
… | … | … | … | … |
| | | | |
3.
Построить гистограммы распределения случайных величин
4.
Найти выборочное среднее
5.
Проверить, используя метод
6.
Построить график функции плотности распределения
7.
Выполнить задание 6 для случайной величины
8.
Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин
9.
Проверить статистическую гипотезу
10.
Проверить статистическую гипотезу
Решение
1.
Построить вариационные ряды для случайных величин
Вариационный ряд величины
-6 | 12 | 22 | 33 |
-5 | 12 | 23 | 34 |
-4 | 12 | 23 | 34 |
-3 | 12 | 24 | 34 |
0 | 13 | 24 | 35 |
1 | 14 | 25 | 36 |
1 | 14 | 25 | 36 |
1 | 15 | 25 | 36 |
1 | 16 | 25 | 37 |
2 | 16 | 25 | 38 |
2 | 16 | 25 | 38 |
3 | 16 | 25 | 38 |
3 | 16 | 26 | 39 |
4 | 16 | 26 | 39 |
4 | 17 | 26 | 40 |
4 | 17 | 27 | 40 |
6 | 17 | 27 | 40 |
7 | 18 | 28 | 40 |
7 | 18 | 29 | 41 |
9 | 19 | 29 | 44 |
9 | 19 | 29 | 45 |
9 | 19 | 30 | 46 |
9 | 19 | 30 | 48 |
10 | 19 | 30 | 48 |
10 | 19 | 30 | 49 |
10 | 20 | 31 | 49 |
10 | 20 | 31 | 51 |
11 | 20 | 32 | 52 |
11 | 20 | 32 | 55 |
11 | 21 | 32 | 58 |
Вариационный ряд величины
1 | 21 |
2 | 22 |
2 | 23 |
3 | 23 |
4 | 24 |
4 | 25 |
6 | 25 |
9 | 25 |
9 | 25 |
10 | 26 |
10 | 26 |
11 | 26 |
11 | 27 |
12 | 27 |
12 | 30 |
13 | 30 |
14 | 31 |
15 | 32 |
16 | 37 |
16 | 38 |
16 | 38 |
17 | 39 |
17 | 40 |
18 | 44 |
19 | 45 |
19 | 48 |
19 | 49 |
19 | 51 |
20 | 52 |
20 | 58 |
2.
Произведя группировку элементов каждой выборки (используя формулу Стерджеса) построить статистические ряды распределения случайных величин
Найдем количество элементов выборок после группировки элементов
Величина
Величина
Сгруппировав элементы получим статистический ряд распределения случайной величины
№ пр-ка | Границы промежутка | Середина промежутка | Количество элементов выборки в промежутке | Частота для промежутка |
1 | -8 ; 0 | -4 | 4 | 0.0333 |
2 | -0 ; 8 | 4 | 15 | 0.1250 |
3 | 8 ; 16 | 12 | 19 | 0.1583 |
4 | 16 ; 24 | 20 | 25 | 0.2083 |
5 | 24 ; 32 | 28 | 24 | 0.2000 |
6 | 32 ; 40 | 36 | 17 | 0.1417 |
7 | 40 ; 48 | 44 | 8 | 0.0667 |
8 | 48 ; 56 | 52 | 8 | 0.0667 |
Сгруппировав элементы получим статистический ряд распределения случайной величины
№ пр-ка | Границы промежутка | Середина промежутка | Количество элементов выборки в промежутке | Частота для промежутка |
1 | 0; 9 | 4,5 | 7 | 0.1167 |
2 | 9 ; 18 | 13,5 | 16 | 0.2667 |
3 | 18 ; 27 | 22,5 | 19 | 0.3167 |
4 | 27 ; 36 | 31,5 | 6 | 0.1000 |
5 | 36 ; 45 | 40,5 | 6 | 0.1000 |
6 | 45 ; 54 | 49,5 | 5 | 0.0833 |
7 | 54 ; 63 | 58,5 | 1 | 0.0167 |
3.
Построить гистограммы распределения случайных величин
Гистограммы распределения приведены на графиках с теоретическими функциями распределения.
4.
Найти выборочное среднее
Выборочное среднее
Выборочное среднее
Найдем исправленное среднеквадратическое отклонение
Найдем исправленное среднеквадратическое отклонение
5.
Проверить, используя метод
Проверим гипотезу о нормальном распределении случайной величины
Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле
Построим вспомогательную таблицу:
| | | | | |
1 | 4 | -1.9169 | 4.2461 | 0.0606 | 0.014 |
2 | 15 | -1.3600 | 10.5760 | 19.572 | 1.850 |
3 | 19 | -0.8030 | 19.3161 | 0.0999 | 0.005 |
4 | 25 | -0.2460 | 25.8695 | 0.7561 | 0.0292 |
5 | 24 | 0.3110 | 25.4056 | 1.9757 | 0.0778 |
6 | 17 | 0.8680 | 18.2954 | 1.6780 | 0.0917 |
7 | 8 | 1.4249 | 9.6610 | 2.7590 | 0.2856 |
8 | 8 | 1.9819 | 3.7409 | 18.139 | 4.8491 |
В итоге получим
По таблице критических точек распределения
Т.к.
Для случайной величины
Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле
| | | | | |
1 | 7 | -1.4036 | 5.9274 | 1.1504 | 0.1941 |
2 | 16 | -0.7405 | 12.0665 | 15.4725 | 1.2823 |
3 | 19 | -0.0774 | 15.8248 | 10.0820 | 0.6371 |
4 | 6 | 0.5857 | 13.3702 | 54.3197 | 4.0627 |
5 | 6 | 1.2488 | 7.2775 | 1.6319 | 0.2242 |
6 | 5 | 1.9119 | 2.5519 | 5.9932 | 2.3485 |
7 | 1 | 2.5750 | 0.5765 | 0.1794 | 0.3111 |
В итоге получим
По таблице критических точек распределения
Т.к.
6.
Построить график функции плотности распределения
и дисперсии их статистические оценки
7.
Выполнить задание 6 для случайной величины
8.
Найти доверительные интервалы для математических ожиданий и дисперсий случайных величин
Найдем доверительный интервал для математического ожидания
Рассмотрим статистику
Найдем
То есть: (20,93721;26,12946).
Найдем доверительный интервал для математического ожидания
Рассмотрим статистику
Найдем
То есть: (20,043;27,056).
Известно, что если математическое ожидание неизвестно, то доверительный интервал для дисперсии при доверительной вероятности
Для случайной величины
Таким образом, имеем доверительный интервал:
Для случайной величины
Таким образом, имеем доверительный интервал:
(Квантили распределения
9.
Проверить статистическую гипотезу
Рассмотрим статистику
где
которая имеет распределение Стъюдента
Тогда область принятия гипотезы
Найдем s:
Найдем значение статистики
По таблице квантилей распределения Стъюдента ([2], стр. 391)
Т. к.
10.
Проверить статистическую гипотезу
Рассмотрим статистику
Найдем значение статистики
По таблицам найдем
Библиографический список
1. Сборник задач по математике для втузов. Ч. 3. Теория вероятностей и математическая статистика: Учеб. пособие для втузов / Под. ред. А.В. Ефимова. – 2-е изд., перераб. и доп. – М.: Наука. Гл. ред. физ.-мат. лит. , 1990. – 428 с.
2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике: Учеб. пособие для студентов вузов. Изд. 4-е, стер. М.: Высш. Шк., 1997. – 400 с.: ил.
3. Гмурман В.Е. Теория вероятностей и математическая статистика. Учеб. пособие для втузов. Изд. 5-е, перераб. и доп. М., «Высш. школа», 1977.
4. Вентцель Е.С. Теория вероятностей. – М.: 1969, 576 с.