Реферат

Реферат Приближенное решение уравнений методом хорд и касательных

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 9.5.2025



Магнитогорский государственный технический университет
Приближенное решение уравнений методом хорд и касательных
Подготовил: Григоренко М.В.

 Студент группы ФГК-98

Магнитогорск –1999

Ведение


Для решения были предложены следующие уравнения:

x3 – 4x – 2 = 0            и            4x = cosx

При решении каждого уравнения вводится соответствующая функция (¦(x) = x3 – 4x – 2  и  ¦(x) = 4x – cosx), а решениями уравнения являются нули соответствующей функции.

Следует отметить, что обе функции непрерывны и дважды дифференцируемы на всей области определения (–¥ ; ¥).

Необходимо найти приближенные решения уравнений с заданной точностью (0,001). С целью упростить работу (в частности, избавить человека от однотипных арифметических и логических операций) и обеспечить максимальную точность вычислениям, при решении данных уравнений была использована ЭВМ и программы на языке Turbo Pascal 7.0, созданные специально для решения данных задач.

Способ хорд

Теоретическая часть


Данный способ можно свести к следующему алгоритму:

1.     Разделим всю область исследования (Df) отрезки, такие, что внутри каждого отрезка [x1;x2] функция монотонная, а на его концах значения функции ¦(x1) и ¦(x2) разных знаков. Так как функция ¦(x) непрерывна на отрезке [x1;x2], то ее график пересечет ось ОХ в какой либо одной точке между x1 и x2.

2.     Проведем хорду АВ, соединяющую концы кривой y = ¦(x), соответствующие абсциссам x1 и x2. Абсцисса a1 точки пересечения этой хорды с осью ОХ и будет приближенным значением корня. Для разыскания этого приближенного значения напишем уравнение прямой АВ, проходящей через две данные точки A(x1;¦(x1)) и B(x2; ¦(x2)), в каноническом виде:

;

Учитывая, что y = 0 при x = a1,  выразим из данного уравнения a1:



3.     Чтобы получить более точное значение корня, определяем ¦1). Если на данном отрезке мы имеем ¦(x1)<0, ¦(x2)>0 и ¦(a1)<0, то повторяем тот же прием, применяя формулу (1) к отрезку [a1;x2]. Если ¦(x1)>0, ¦(x2)<0 и ¦(a1)>0, то применяем эту формулу к отрезку [x1;a1]. Повторяя этот прием несколько раз, мы будем получать все более точные значения корня а2, а3 и т.д.

Пример 1.      x3 – 4x – 2
= 0


¦(x) = x3 – 4x – 2,

¦¢(x) = 3x2 – 4,

производная меняет знак в точках
¦¢(x)        +                                        +

¦(x)                                                      х

            

функция ¦(x) монотонно возрастает при xÎ(–¥;] и при хÎ[;¥), и монотонно убывает при xÎ[;].

Итак, функция имеет три участка монотонности, на каждом из которых находится по одному корню.

Для удобств дальнейших вычислений сузим эти участки монотонности. Для этого подставляем наугад в выражение ¦(х) наугад те или иные значения х, выделим внутри каждого участка монотонности такие более короткие отрезки, на концах которых функция имеет разные знаки:

¦(–2)= –2,

¦(–1)= 1,

¦(0)= –2,

¦(1)= –5,

¦(2)= –2,

¦(3)= 13.

Таким образом, корни находятся в интервалах

(–2;–1),     (–1;0),      (2;3).

Пункты 2 и 3 алгоритма выполняются при помощи ЭВМ (текст соответствующей программы приводится в Приложении 1) Программа выводит последовательность приближенных значений с увеличивающейся точностью для каждого из участков:


a1=-0.66667 при х1=-1.00000 и x2=0.00000

a2=-0.56250 при х1=-0.66667 и x2=0.00000

a3=-0.54295 при х1=-0.56250 и x2=0.00000

a4=-0.53978 при х1=-0.54295 и x2=0.00000

a5=-0.53928 при х1=-0.53978 и x2=0.00000

a6=-0.53920 при х1=-0.53928 и x2=0.00000

a7=-0.53919 при х1=-0.53920 и x2=0.00000

a8=-0.53919 при х1=-0.53919 и x2=0.00000
 
Для (–2;–1):                                                Для (–1;0):

a1=-1.33333 при х1=-2.00000 и x2=-1.00000

a2=-1.55000 при х1=-2.00000 и x2=-1.33333

a3=-1.63653 при х1=-2.00000 и x2=-1.55000

a4=-1.66394 при х1=-2.00000 и x2=-1.63653

a5=-1.67195 при х1=-2.00000 и x2=-1.66394

a6=-1.67423 при х1=-2.00000 и x2=-1.67195

a7=-1.67488 при х1=-2.00000 и x2=-1.67423

a8=-1.67506 при х1=-2.00000 и x2=-1.67488

a9=-1.67511 при х1=-2.00000 и x2=-1.67506

a10=-1.67513 при х1=-2.00000 и x2=-1.67511

a11=-1.67513 при х1=-2.00000 и x2=-1.67513
для (2;3)

a1=2.13333 при х1=2.00000 и x2=3.00000

a2=2.18501 при х1=2.13333 и x2=3.00000

a3=2.20388 при х1=2.18501 и x2=3.00000

a4=2.21063 при х1=2.20388 и x2=3.00000

a5=2.21302 при х1=2.21063 и x2=3.00000

a6=2.21386 при х1=2.21302 и x2=3.00000

a7=2.21416 при х1=2.21386 и x2=3.00000

a8=2.21426 при х1=2.21416 и x2=3.00000

a9=2.21430 при х1=2.21426 и x2=3.00000

a10=2.21431 при х1=2.21430 и x2=3.00000

Приближенным значением корня уравнения на отрезке

(–2;–1) является x = –1,6751

1. Реферат на тему Right To Vote Essay Research Paper Situated
2. Реферат на тему Spinal Injuries In Sports Essay Research Paper
3. Реферат Понятие и сущность иностранных инвестиций
4. Реферат на тему Принятие христианства на Руси 2
5. Сочинение на тему Гартаючы старонкі твораў Івана Шамякіна.
6. Реферат на тему Loman Willy Essay Research Paper 1
7. Реферат на тему Формування дитячих неврозів
8. Реферат Частота серцевих скорочень. Аналогові пристрої вимірювання частоти серцевих скорочень
9. Реферат на тему Phil CollinS In The Air Tonight Essay
10. Биография на тему Бядуля