Реферат

Реферат Середні Значення

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024




Середні значення




Статистика оперує такими середніми значеннями: серед­нє арифметичне, середнє квадрати­чне, середнє геометричне.

Середнє арифметичне. Нехай ми маємо п об'єктів, у якихвиміряно деяку характеристику, що має значення x1, x2, …, xn.
Середнім значенням (або середнім арифметичним) називається таке число , яке дістають ді­ленням суми всіх да­них вибірки x1, x2, …, xn на число цих даних n,



або   (- знак суми – “сигма” велика)

Приклади. 1) Протягом перших п’яти днів березнятемпература повітря, вимірювана о 8 год. ранку, станови­ла 3°, 5°, 4°, 1°, 2°. Знайти середню температуру за ці дні.

Маємо:   

2) 3 двох учнів треба вибрати одного в баскетбольну команду. Відомі кількості їхніх влу­чень м'яча в корзину накожні десять кидків під час тренувань.
Таблиця 1



Номер  тренувань



1



2



3



4



5



Перший учень





4



3



5



3



6



Кількість влучень


Другий учень





5



4



3



6



5





Розв'язання.  

Знаходимо середню кількість влу­чень.

Для першого учня:



Для другого учня:



Отже, в команду слід узяти другого учня.

Розглянемо деякі властивості середнього арифметичного.

1) Знайдемо відхилення l кожного значення xj від се­реднього. Різниця х —може бути від'є­мною або додатною.

Сума всіх п відхилень дорівнює нулю. Проілюструє­мо цю властивість   на   при­кладі. Вихі­дні дані:. (0; 0; 1; 1; 3;3;3; 5);  n= 8;  = 2.

2) Якщо до кожного ре­зультату спостережень додати деяке число с (константу), то середнє арифметичне  пере­твориться в + с. Візьмемо, наприклад, попередні 8 зна­чень і додамо до кож­ного з них по 5. Дістанемо числа 5; 5; 6: 6; 8; 8; 8; 10, середнє арифметичне яких (5 + 5+ 6 + 6 + 8 + 8 + 8+10) : 8 = 7. Середнє на 5 одиниць більше.


Таблиця 2




Значення

Середнє арифметичне

Відхилення

0

2

-2

0

2

-2

1

2

-1

1

2

-1

3

2

1

3

2

1

3

2

1

5

2

3

 

 

-

0



3) Якщо кожне значення сукупності з середнім  по­множити на константу с, то середнє ариф­метичне стане с. Перевірте властивість, використовуючи попередні дані.

Якщо величини деяких даних повторюються, то середнє арифметичне визначають за фор­мулою

,де

fiчастота повторення результату xi.

Приклади. 1) Протягом двадцяти днів серпня тем­пература повітря вранці була такою: 17°, 18°, 19°, 20°, 18°, 18°, 18o, 19o, 19°, 20°, 20°, 19°, !9°, 19°, 20°, 19o, 18°, 17°, 16°, 19°.

Знайти середню температуру за цими даними.

Тут окремі значення (17°, 18°, 19°, 20°) повторюються. Середня температура дорівнює:



2) Подаємо запис обчислення середнього арифметичного при повторенні деяких даних у ви­гляді таблиці.


Таблиця 3




Вихідні

дані



xi



Час­тота fi



xifi



Остаточне обчис­лення



2

6

10

2

2

4





де I=1,2,3,…,11

2

6

10

3

1

3

3

6

11

4

3

12

4

6

12

5

2

10

4

8

12

6

4

24

4

9

15

8

1

8

5

9

15

9

3

27

5

9

15

10

2

20







11

1

11







12

2

24







15

3

45
















3) За контрольну роботу учні одержали такі оцінки
Оцінки (бали)    5   4   3    2

Кількість

учнів                    6   7   4   17

Чи достатньо засвоєний матеріал?

Знайдемо середню величину оцінок.



Ця оцінка є задовільною. Але частота оцінки «2» (мода) дуже висока, вона дорівнює 17.  Отже, матеріал засвоєний учнями недостатньо.

Середнє квадратичне відхилення. Ми вже встановили, що сума відхилень даних від сере­днього значення дорівнює нулю. Тому, якби ми вирішили шукати середній показник відхилень, то він також дорівнював би нулю. В статистиці користуються іншим показником — середнім квадратич­ним відхиленням, який знаходять так: усі відхилення підносять до квадрата; знаходять середнє арифметичне цих квадратів; із знайденого середнього арифметичного добувають квадра­тний корінь. Середнє квадратичне відхилення позначають грецькою буквою σ (“сигма” мала):



Знаходження середнього квадратичного відхилення подано в таблиці 4.
Таблиця 4



Зна­чен­ня xi



Сере­днє ариф­ме­ти­чне



Відхи­лення

xi



Квадрат відхи­лення

(xi-)2



Квадратичне від­хилення σ



5



-
7


49



8

- 4

16

10

- 2

4

12

0

0

17

5

25

20

8

64

=72

*=

=12











У статистиці користуються також величиною σ2 (квад­рат середнього квадратичного відхи­лення), яку називають дисперсією.

Середнє геометричне п додатних чисел х1, х2,   х3, ...,хп  визначається виразом

 , тобто середнє ге­ометричне х1
х2

х3...п
є корінь n-го степеня з добутку всіх xi  = 1, 2, ...).

У випадку двох чисел а і b середнє геометричне нази­вають   середнім   пропорційним   цих   чисел.   З    рівності тс = аb випливає,  що а : mc= тс : b.

На практиці окремим особам, організаціям, керівникам підприємств доводиться розв'язу­вати різноманітні задачі, пов'язані з використанням поняття моди, медіани, серед­нього. Напри­клад, яких розмірів дитячого взуття слід випускати більше, ніж інших; на якому з міських марш­ру­тів треба пустити автобусів більше, ніж на решті; якого розміру спортивних костюмів слід ви­готовити найбільше для учнів 10—11 класів тощо.

Розглянуті моду, медіану і середні значення називають мірами центральної тенденції.



1. Реферат на тему Класична риторика розділ елокуція або культура мовлення
2. Реферат на тему Історичний розвиток біологічних наук
3. Реферат Архитектура и скульптура Уфы
4. Диплом на тему Организация производства хлебобулочных изделий
5. Курсовая Синтез циклогексанона
6. Реферат на тему Diabetes Essay Research Paper Diabetes Insipidus rare
7. Курсовая Расчет переходного процесса в системе электроснабжения
8. Реферат Защита компьютера от атак через интернет
9. Реферат на тему UnH1d Essay Research Paper Adam Cohen
10. Отчет_по_практике на тему Язык программирования Pascal