Реферат

Реферат Охлаждение, компрессионная машина

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024



Пояснительная записка к комплексному курсовому проекту




«»

                                                                   Исполнитель

                                                             Руководитель


Минск
2000



                                  


ВВЕДЕНИЕ
В газотурбинных установках и компрессионных машинах маслоохладители обеспечивают отвод тепла , полученного маслом в подшипниках  ,  редукторных  передачах   и  других  элементах . Охлаждение масла производится водой , охлаждаемой в градирнях . В некоторых случаях охлаждение производится проточной водой . Теплообмен между маслом и водой осуществляется в кожухотрубных многоходовых маслоохладителях с кольцевыми или сегментными перегородками между ходами .

В этих аппаратах осуществляется веерное или зигзагообразное течение масла с поперечным обтеканием труб , близким по характеру к обтеканию труб в шахматном пучке . Веерное течение масла осуществляется в маслоохладителях с кольцевыми перегородками , а зигзагообразное – с сегментными . Требуемое число ходов со стороны масла обеспечивается изменением количества перегородок , установленных на пучке труб между трубными досками . В результате значительно уменьшается число креплений труб в трубных досках и снижается трудоемкость изготовления аппарата по сравнению с одноходовой конструкцией . Одновременно с этим снижается эффективность теплообмена в результате перетекания масла из входа в ход через технологические зазоры между перегородками и корпусом и через зазоры около труб пучка .

Со стороны воды маслоохладители выполняются обычно также многоходовыми за счет изменения числа перегородок в крышках , что позволяет регулировать подогрев воды и ее расход без существенного снижения коэффициентов теплоотдачи со стороны воды .[8]

Для охлаждения масла , используемого в подшипниках , редукторных передачах и других элементах компрессорных машин , заводом « Энергомаш « выпускается серия аппаратов типа МА с поверхностью 2;3;5;6;8;16 и 35 м2 . Все охладители имеют вертикальное исполнение и состоят из следующих основных узлов : верхней съемной крышки 1 , трубной системы 2 и корпуса 3 . Вода движется внутри труб и камер , масло – в межтрубном пространстве . Направление движения масла в этих аппаратах создается системой сегментных перегородок или перегородок типа диск-кольцо .[7,стр.32]



1. СИСТЕМА ОХЛАЖДЕНИЯ МАСЛА

                    В ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКЕ
На рис. 1 показана принципиальная схема системы маслоснабжения газоперекачивающего турбокомпрессорного агрегата НЗЛ типа ГТК – 10 , предназначенного для установки на перекачивающих станциях газопроводов . Общая вместимость маслосистемы – 13 м3 . В данном агрегате маслобак  совмещен с рамой газотурбокомпрессора . Заливка масла в него осуществляется по специальной линии через фильтр тонкой очистки 1 . Из нижней части ( картера ) бака 2 масло пусковым 4 или главным 6 масляным насосом через систему обратных клапанов 5 подается к охладителю 8 и далее через фильтр 3 по напорным линиям на смазывание и охлаждение подшипников турбины и компрессора . Из подшипников масло вновь сливается в нижнюю часть маслобака 2 .

Охлаждение масла в аппарате 8 осуществляется антифризом , не замерзающим при понижении температуры наружного воздуха до –40 0 С . Охлаждение антифриза  производится в параллельно включенных аппаратах 10 , имеющих систему воздушного охлаждения . Воздух через эти охладители продувается вентиляторами 11 , приводимыми от электродвигателей . Циркуляция антифриза в системе осуществляется с помощью главного насоса 13 . Насос 14 является резервным . Бачок 12 служит демпфером . В баках 15 и 17 вместимостью  по 10 м3 каждый содержатся соответственно антифриз и дистиллят . Насос 16 является вспомогательным и служит для заполнения системы охлаждения антифризом или дистиллятом . В летнее время рабочим телом в системе охлаждения служит дистиллят . В этом случае для обеспечения работоспособности схемы в зимних условиях в ней предусмотрен дополнительный подогреватель 9 .

Охлаждение масла в данном агрегате осуществляется , таким образом , по двухконтурной схеме : в аппарате 8 теплота от масла передается антифризу ( дистилляту ) , от которого она в свою очередь отводится воздухом в охладителях 10 . Применение этой двухконтурной схемы охлаждения масла в данном случае продиктовано двумя причинами : отсутствием в месте установки газотурбокомпрессоров необходимого количества охлаждающей воды ; необходимостью обеспечения ее надежной работы при температурах наружного воздуха ниже 0 0 С , так как с целью снижения стоимости сооружения газоперекачивающих станций часть их оборудования располагается на открытых площадках .[7,стр.14]



   2. ТЕПЛОВОЙ РАСЧЕТ ТЕПЛООБМЕННИКА.
Принимаем схему вертикального маслоохладителя с прямыми трубками и перегородками типа диск-кольцо. Внутри трубок течет охлаждающая вода (пресная), в межтрубном пространстве – трансформаторное масло, омывая трубки снаружи.
Средняя температура масла в маслоохладителе[9, стр.54]:
tм.ср.=0,5*(tм1+tм2), оС                                                                               (2.1)      

где   tм1-температура масла на входе в маслоохладитель, оС;

        tм2-температура масла на выходе из маслоохладителя оС;

tм.ср =0,5*(60+48)=54оС.   

                                  

Физические свойства при tм.ср.= 54оС:                            [9, приложение 3]

Срmм=1,876 кДж/(кг оС)

rм=859,3кг/м3

nм=6,68*10-6 м2

Prм=101
Количество тепла, которое необходимо отвести охлаждающей водой от масла[9, стр.54]:
Qм=(Gм*rм* Срmм*( tм1-tм2))/3600, кВт/с                                                (2.2)          
где  Gм - номинальный расход масла через аппарат, м3/ч;

rм – плотность масла при tм.ср.= 54оС, кг/м3 ;

Срmм –удельная теплоемкость масла при tм.ср.= 54оС, кг/м3 ;

Qм =(8,4*859,3*1,876*(60-48))/3600=44,3 кВт/с
Физические свойства воды при tв=18 оС:                          [9, приложение2]

Срmв=4,185 кДж/кг*оС

rв=998,5кг/м3



Температура охлаждающей воды при выходе из маслоохладителя:

Qм= Qв

Gм*rм* Срmм*( tм1-tм2)= Gв*rв* Срmв*( tв2-tв1) [9, стр.54]              (2.3)

tв2=tв1+(Qв*3600/ (Срmв* Gв*rв)), оС

где   tв1-температура воды на входе в маслоохладитель, оС;

Qв – тепловой поток, воспринимаемый охлаждающей водой, кВт/с;

Gв -номинальный расход воды через аппарат, м3/ч;

tв2=18+(44,3*3600/(4,185*22*998,5))=20 оС
Средняя температура воды[9, стр.54]:

        tв.ср.=0,5*( tв1+tв2), оС                                                                                (2.4)         

tв.ср.=0,5*(18+20)=19оС
Физические параметры воды при tв.ср.= 19 оС:       [9, приложение 2]

nв=0,9394*10-6 м2

Prв=6,5996

lв=0,604 Вт/(м*К)

rв=997,45 кг/м3
Среднелогарифмический температурный напор (для противоточной схемы) [7, стр. 104]:
     Dtср=((tм1-tв2)-(tм2-tв1))/(ln((tм1-tв2)/(tм2-tв1)))*eDt, оС                  (2.5)     
eDtпоправочный коэффициент, учитывающий особенности принятой схемы движения теплоносителей. Для противоточной схемы  eDt=1; [7, стр. 104]

     Dtср =((60-20)-(48-18))/(ln((60-20)/(48-18)))=34 оС
Определение коэффициента теплопередачи:

Среднее значение коэффициента теплопередачи  К (Вт/(м2.К) определяется по уравнению (4.29) [7,стр. 108] :
К=1/((1/aмпр)+(djdн/dвнlлат)+(jdн/dвнaв)),     Вт/(м2*К)                            (2.6)

 

где  aм пр-приведенный коэффициент теплоотдачи масла, Вт/(м2*К);

 aв- коэффициент теплоотдачи воды, Вт/(м2*К);

dн –наружный диаметр трубки,м;   

dвн-внутренний диаметр трубки,м;

 d -толщина стенки трубки, м;

lлат.- коэффициент теплопроводности латуни, Вт/(м*К);

j- коэффициент оребрения (j=2,26)


Задаемся температурами стенок со стороны воды и со стороны масла:

tст.в.=25 оС

tст.м.=40 оС
Задаемся скоростями воды и масла:

wв=1 м/с

wм=0,5 м/с
 Значение приведенного  коэффициента теплоотдачи    aм пр [Вт/(м2*К)] от масла в пучке трубок с поперечным или близким к нему характером омывания определяется соотношением [7,стр.109]:

aм пр=aмhо,                                                                                                    (2.7)

где aм-среднее значение коэффициента теплоотдачи, Вт/(м2*К);

hо-поправочный коэффициент (hо=0,95-0,98)

Для вычисления aм воспользуемся формулой (4.31) [7,стр. 109]:
aм=0,354(lм /d)*Re0,6*Prм0,33*(Prм/Prw)0,18, Вт/( м2*К)                                        (2.8)

где lм - коэффициент теплопроводности масла при .ср.= 54 оС, Вт/(м*К);

Prf число Прандтля для масла при tм.ср.= 54 оС;

Prw - число Прандтля для масла при tст.м.=40 оС;

d-расстояние между внешними образующими трубок,м;

Reм- критерий Рейнольдса для масла. Он определяется следующим образом:

Reм=(wм*d/nм)                                                                                             (2.9)

где wм –скорость масла, м/с;

nм –вязкость масла tм.ср.= 54оС, м2/с;

Reм=(0,5*0,003/6,68*10-6)=224
aм=0,354(0,107/0,003)*2240,5*101,720,33*(101,72/143,56)0,18=673,2   Вт/( м2*К) 

aм пр=673,2*0,95=639,5      Вт/( м2*К)
        Определяем режим движения воды в трубках. Критерий Рейнольдса для охлаждающей воды [9,стр.55]:
Reв=(wв*dвн/nв)                                                                                        (2.10)        

где wвскорость воды,м/с;

dвн –внутренний диаметр трубки,м;

nв –коэффициент кинематической вязкости, м2 /с;

Reв=(1*0,011/(1,006*10-6))=11000
У нас турбулентный режим течения жидкости, т.к. Reв= 11000>5*103. При таком режиме среднее значение aв определяется по формуле[7,стр 114]:

                               

aв=0,021*(lв/ dвн)* Reв0,8* Prf0,43*( Prf/ Prw)0,25, Вт/( м2*К)                (2.11)

                                               

lв –коэффициент теплопроводности воды при tв.ср.= 19оС;

Prf –число Прандтля для воды при tв.ср.= 19 оС;

Prw - число Прандтля для воды при tст.в.=25 оС;
aв=0,021*(0,58/0,011)* 110000,8* 7,020,43*( 7,02/ 6,32)0,25=4460 Вт/( м2*К)
Плотность теплового потока внутри трубок qв[9,стр. 56]:
qв=aв*( tст.в.- tв.ср), Вт/м2                                                                                                               (2.12)          

qв=4460 *( 25- 19)=13380 Вт/м2



к=1/((1/639,5)+(0,0015*2,26*0,014/104,5*0,011)+(2,26*0,014/4460*0,011))==420 Вт/( м2*К)
Поверхность охлаждения маслоохладителя расчитывается [9,стр. 56]:
F¢=Q/(k*DTср), м2                                                                                      (2.13)

                         

Q - количество охлаждаемого водой тепла, Вт;

DTср - среднелогарифмический  температурный напор, оС;

k – коэффициент теплопередачи, Вт/( м2*К);

F¢=44300/(420*34)=3,1 м2



Удельная плотность теплового потока[7,стр. 108]:
q=Q/F¢, Вт/( м2*К)                                                                                      (2.14)

q=44300/3,1=14290 Вт/( м2*К);
С другой стороны это можно выразить следующим образом [9,стр.55]:

q=aм*Dtм=461*Dtм                                                                                    (2.15)       

Следовательно:   Dtм=q/aм=14290/640=21,3 оС
Из рис.2.1 видно что    tст.м.=tм.ср.- Dtм=54-21,3=32,7 оС

Т.к. q=q1=q1=…=qn, то

q=aв*Dtв=4460*Dtв

Dtв=q/aв=14290/4460=3,2 оС

tст.в.=tв.ср.+Dtв=19+3,2=22,2 оС

По результатам расчета принимаем температуру стенки со стороны воды tст.в.= 22,2 оС и температуру стенки со стороны масла tст.м.=32,7 оС.
Рис.2.1 График изменения температур теплоносителей вдоль поверхности теплообмена при противотоке.
Теперь пересчитываем площадь поверхности охлаждения относительно найденных температур стенок:
Prв(при tст.в.= 22,2 оС)=6,32

aв=0,021*(0,58/0,011)* 110000,8* 7,020,43*( 7,02/6,78)0,25=4263,5 Вт/( м2*К)

qв=4263,5 *( 22,2- 19)=13643 Вт/м2

Prм(при tст.м.= 32,7оС)=132,8

aм=0,354(0,107/0,003)*2240,5*101,720,33*(101,72/132,8)0,18=695,3 Вт/( м2*К)

 aм пр=695,3*0,95=660,5 Вт/( м2*К)

q=660,5*(54-32,7)=14069,4 Вт/м2



к=1/((1/660,5)+(0,0015*2,26*0,014/104,5*0,011)+(2,26*0,014/4263,5*0,011))=

=412 Вт/( м2*К)
F¢=44300/412*34=3,16 м2



Поверхность охлаждения с учетом загрязнения[9,стр.56]:
F=1,1*F¢, м2                                                                                                                                                      (2.16)       

F=1,1*3,16=3,47 м2

Далее проводим аналогичный расчет для разных скоростей воды и масла, для того, чтобы выбрать оптимальную площадь поверхности охлаждения и оптимальные скорости воды и масла. Варианты расчетных скоростей и результаты вычислений приведены в табл. 2.1. 

                                                                                                                    Таблица 2.1

Зависимость поверхности охлаждения маслоохлодителя от скоростей воды и масла .



wв, м/с

0,7

1

1,3

1,5

wм, м/с

0,3

0,5

0,7

0,9

Reв

29806

14903

19374

22354

aв, Вт/( м2*К)

7833

4493,3

5549,7

6222,7

qв, Вт/ м2

18799,5

10784

13319,2

14934,4

Reм

11,8

19,7

27,6

35,5

aм, Вт/( м2*К)

321,5

412

492

557,8

qм, Вт/ м2

7779,4

9969,8

11904

13498

к, Вт/( м2*К)

308,6

384,6

456,6

507,6

F¢, м2

9,24

7,4

6,3

5,6

F, м2

8,4

6,7

5,7

5,1

Выбираем вариант с площадью поверхности охлаждения F=3,47м2 и скоростями воды и масла wв=1 м/с и wм=0,5м/с.
   


                    
3. КОНСТРУКТИВНЫЙ РАСЧЕТ.
3.1 Определение количества трубок и способа их размещения.

Конструктивный расчет кожухотрубных теплообменников состоит в определении количества трубок и способа их размещения, нахождении внутреннего диаметра корпуса и числа ходов в трубном и межтрубном пространстве.

В основу расчета положены исходные и результаты теплового расчета, приведенные выше.
Общая длина трубы в расчете на одноходовой пучок, м[6,стр.26]:
L=900*F¢*dвн*wв*rв/Gв                                                                          (3.1.1)

F¢- поверхность теплообмена, м2;

dвн – внутренний диаметр трубы,м;

– скорость теплоносителя (в нашем случае это скорость воды, т.к. она течет внутри трубок), м/с;

 rв – плотность воды, кг/ м3;

Gв – часовой расход воды, кг/ч;

L=900*3,16*0,014*1*997,45/10008=9,3м
Рабочая длина трубы в одном ходу,м:
L’=L/Zв, м

 

L – общая длина трубы,м;

Zв – число ходов по воде;                                                       (3.1.2)           [6,стр26]
Определяем число ходов по воде. Для этого рассчитаем несколько вариантов и выберем оптимальный.
Zв=2                  L’=9,3/2=4,65 м

Zв=4                  L’=9,3/4=2,325 м

Zв=6                  L’=9,3/6=1,55 м
Выбираем Zв=4 и L’=2,325 м.
Число трубок одного хода в трубном пространстве, шт.:
No=(4*Gв)/(3600*p*dвн2*rв*wв )                                         (3.1.3)           [6,стр27]
Gв – массовый расход воды в трубном пространстве, кг/ч;

dвн – внутренний диаметр трубок, м;

rв – плотность воды, кг/м3;

wв – скорость воды,м/с;

No=(4*10008)/(3600*3,14* (0,014)2*997,45*1)=18 шт
Общее количество трубок, шт;
N=No*Zв,шт                                                                             (3.1.4)           [6,стр27]
No - число труб одного хода в трубном пространстве, шт;

Zв – число ходов воды в трубном пространстве;

N=18*4=72
Шаг труб в пучке t (расстояние между центрами трубок) принимают из условий прочности:
t=(1,3…1,.5)*dн, м                                                                   (3.1.5)           [6,стр27]
dн – наружный диаметр трубок,м;

t=1,3*0,016=0,02м
Выбираем концентрическое размещение труб из условий максимальной компактности, удобства разметки трубных досок и монтажа пучка труб. [6,стр27]
           3.2 Внутренний диаметр корпуса теплообменника.
Для многоходовых теплообменников  внутренний диаметр корпуса определяется:
D=1,1*t*(N/h)0,5,м                                                                    (3.2.1)           [6,стр28]
t – щаг труб в пучке,м;

N – общее количество труб,шт;

h - коэффициент заполнения трубной решетки (принимается 0,6-0,8);

D=1,1*0,02*(72/0,7)0,5=0,223м
         3.3 Конструкция и размеры межтрубного пространства.
Для повышения скорости теплоносителя в межтрубном пространстве кожухотрубных теплообменников используются поперечные перегородки. В нашем случае это перегородки типа диск-кольцо. [6,стр28]
Площадь межтрубного пространства,:
Sмтр=S1=S2=S3=Gм/(3600*rм*wм), м2                                                (3.3.1)           [6,стр29]
S1 – площадь кольцевого зазора между корпусом и диском, м2;

S2 – площадь в вертикальном сечении между кольцевыми и дисковыми перегородками, м2;

S3 – проходное сечение для теплоносителя в кольце, м2;

Gм – массовый расход теплоносителя (в данном случае это масло, т.к. оно течет в межтрубном пространстве) ,кг/ч;

rм – плотность масла, кг/м3;

wм – скорость масла в межтрубном пространстве, м/с;

Sмтр=10008/(3600*859,3*0,5)=0,0065 м2
Площадь кольцевого зазора между корпусом и диском:
S1=(p/4)*[( D2- D22)-N*dн2], м2                                                                     (3.3.2)           [6,стр28]
D – внутренний диаметр корпуса, м;

D2 – диаметр  дисковой перегородки, м;

N – число труб, шт;

dн –наружный  диаметр трубки, м;
D2=[(p*( D2- N*dн2)-4*S1)/ p]0,5,м

D2=[(3,14*( 0,2232- 72*(0,016)2)-4*0,0065)/3,14]0,5=0,152м

Проходное сечение для теплоносителя в кольце:
S3=(p* D12/4)*[1-0,91*h*(dн/t)2], м2                                                         (3.3.3)           [6,стр29]
D1 – диаметр кольцевой перегородки, м;

h - коэффициент заполнения трубной решетки (принимается 0,6-0,8);

dн –наружный  диаметр трубки, м;

t – щаг труб в пучке,м;
D1=[4*S3/((1-0,91*h*(dн/t)2)* p)] 0,5

D1=[4*0,0065/((1-0,91*0,7*(0,016/0,02)2)*3,14)] 0,5=0,014м
Площадь в вертикальном сечении между кольцевыми и дисковыми перегородками:
S2=p*Do*h*(1-(dн/t))2                                                                                       (3.3.4)           [6,стр28]
Do – средний диаметр, м;

Do=0,5*(D1+D2)=0,083м

h – расстояние между перегородками, м;

dн –наружный  диаметр трубки, м;

t – щаг труб в пучке,м;
h=S2/[p*Do*(1-(dн/t))], м

h=0,0065/[3,14*0,083*(1-(0,016/0,02))]=0,1244 м
Число ходов масла в межтрубном пространстве:
Zм=L’/h

L’ – рабочая длина трубы в одном ходу, м:

h – расстояние между перегородками, м;

Zм=2,325/0,1244=18
Число перегородок в межтрубном пространстве равно Zм-1=18-1=17

                                  

                     3.4 Определение диаметра патрубков.
Диаметр патрубков dn зависит от расхода и скорости теплоносителя и определяется из соотношения:
(p/dn2)=(G/(3600*r*wn))                                                         (3.4.1)           [6,стр31]

G – расход теплоносителя, кг/ч;

r - плотность теплоносителя, кг/м3;

wn – скорость теплоносителя, м/с.

dn=[(4*G)/( p*3600*r*wn)]0,5,м

Скорости в патрубках обычно принимаются несколько большими, чем в аппарате. Мы принимаем:

wв=2,5м/с

wм=1м/с

 

Т.о. диаметр патрубков для воды:

dnв=[(4*10008)/( 3,14*3600*997,45*2,5)]0,5=0,0014м,

для масла:

dnм=[(4*3,6)/( 3,14*859,3*1)]0,5=0,0053м,

                         4. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ.
Задачей гидравлического расчета является определение величины потери давления теплоносителей при их движении через теплообменные аппараты. Падение давления DРто в теплообменниках при прохождении теплоносителя по трубам и в межтрубном пространстве складывается из потерь на сопротивление трению и на местные сопротивления, Па:
DРто=DРтр+DРмс=[(l*L’* w2)/(dэ*2)]*r+åz*( (w2*r)/2), Па 

                                                                                                   (4.1.1)           [6,стр32]
l - коэффициент гидравлического трения ( для латунных труб l=0,02);

L’ – рабочая длина трубы в одном ходу, м;

w – средняя скорость движения теплоносителя на данном участке, м/с;

dэ – эквивалентный диаметр сечения канала, равный 4*f/Sсм;

f – площадь сечения прохода теплоносителя, м2;

f=Sмтр=0,0065 м2 ;

Sсм – смоченный периметр прохода теплоносителя, м;

Sсм=p*D;

D – внутренний диаметр корпуса теплообменника, м;

Sсм=3,14*0,223=0,7м;

dэ=4*0,0065/0,7=0,037м

r - плотность теплоносителя, кг/м3;

åz - сумма коэффициентов местных сопротивлений. Ихзначения мы берем из таблицы (табл.1,[9]);

Для воды мы учитываем коэффициенты, приведенные в таблице 4.1.
                                                                                                                   Таблица 4.1.

              Значения коэффициентов местных сопротивлений.



Местное сопротивление

Коэффициент

Входная или выходная камера(удар и поворот)

1,5

Поворот на 1800 внутри камеры при переходе из одного пучка трубок в другой

2,5

Вход в трубное пространство и выход из него

1



Таким образом, сумма коэффициентов местных сопротивлений для воды:
åzв=1,5*2+2,5*3+1*2=12,5
DРтов=DРтр+DРмс=[(0,02*2,325*12)/(0,037*2)]*997,45+[12,5*((12*997,45)/2)]=

=6861 Па
Располагаемый перепад давлений, создаваемый насосом:
DРр=DРто+DРтр,Па

DРтр=[(l*L’* w2)/(dэ*2)]*r=[(0,02*2,235*12)/(0,037*2)]*997,45=626,8 Па

DРрв=6861+626,8=7478,7 Па
Соответствующее значение температурного напора:
Нр=DРр/(r*g), м                                                                       (4.1.2)           [6,стр34]
DРр - располагаемый перепад давлений, создаваемый насосом, Па;

r - плотность теплоносителя, кг/м3;

g – ускорение свободного падения, м2/с;
Нрв=7487,7/(997,45*9,8)=0,77 м

Мощность N, кВт на валу насоса:
N=(G*DРр)/(1000*r*hн), кВт                                                 (4.1.3)           [6,стр34]
G – расход рабочей среды, кг/с;

DРр - располагаемый перепад давлений, создаваемый насосом, Па;

r - плотность теплоносителя, кг/м3;

hн – КПД насоса;

Nв=(2,78*7487,7)/(1000*997,45*0,7)=0,03 кВт
Далее делаем аналогичный расчет для масла.
l=0,02+(1,7/Re 0,5)

l=0,02+(1,7/19,70,5)=0,4
Для масла учитываем коэффициенты, приведенные в таблице 4.2.
                                                                                                                   Таблица 4.2.

              Значения коэффициентов местных сопротивлений.

Местное сопротивление

Коэффициент

Входная или выходная камера(удар и поворот)

1,5

Поворот на 1800 через перегородку в межтрубном пространстве

1,5

Вход в межтрубное пространство

1,5

Задвижка нормальная

0,5-1,0



Таким образом, сумма коэффициентов местных сопротивлений для масла:
åzм=1,5*2+1,5*17+1,2*2+0,7*2=32,9
DРтом=DРтр+DРмс=[(0,4*0,325*0,52)/(0,037*2)]*859,3+[32,9*((0,52*859,3)/2)]=

=6233,7 Па
Располагаемый перепад давлений, создаваемый насосом:
DРтрм= (0,4*0,325*0,52)/(0,037*2)]*859,3=2699,8Па

DРрм=6233,7+2699,8=8933,5 Па
Соответствующее значение температурного напора:
Нрм=8933,5/(859,3*9,8)=1,06 м

Мощность N, кВт на валу насоса:

Nм=(3,6*8933,5)/(1000*859,3*0,7)=0,053 кВт
 
  

 
         


1. Реферат Чеховский образ
2. Реферат Гинденбург дирижабль
3. Диплом Технология возделывания яровой пшеницы в ТОО Тайынша-Астык
4. Реферат Адаптация мигрантов и причины миграционных процессов
5. Реферат Планирование прибыли 3
6. Реферат на тему Analysis Of The Man On The Dum
7. Биография Варакин, Василий Дмитриевич
8. Реферат на тему Acceptance Of Homosexual Marriage Essay Research Paper
9. Диплом на тему Система заданий при обучении оформлению сообщения в устной речи
10. Сочинение Любовь в жизни героев Шолохова