Реферат

Реферат Создание начального вращения в прыжках стопорящим действием конька о лед и закручиванием тела

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 13.1.2025



Создание начального вращения в прыжках стопорящим действием конька о лед и закручиванием тела

Кандидат педагогических наук, доцент В.И. Виноградова? Московский государственный технический университет "МАМИ", Москва

Самый распространенный способ создания начального вращения в прыжках в фигурном катании - закручивание тела. Это основной способ в прыжках "петля", "тулуп", "лутц" и "валлей" и вспомогательный - в прыжке "cальхов". Стопорящее же действие конька о лед для создания начального вращения в большей или меньшей степени встречается во всех прыжках. Стопорящее действие конька - основной способ создания начального вращения в прыжке "аксель", сопутствующий - в прыжках "cальхов", "петля" и вспомогательный - в прыжках "тулуп", "флип" и "лутц" [2].

Для описания двигательных действий в прыжках построим механическую модель фигуриста. Туловище фигуриста моделируем конусом с вершиной в точке его опоры о лед и основанием радиуса Rк у плеч. Естественно, что такая модель приемлема только в том случае, когда форма туловища фигуриста приближается к конической. Считаем, что перед отрывом фигуриста ото льда его руки разведены в противоположных направлениях параллельно поверхности льда и моделируются однородными стержнями. Ось x фигуриста отклонена от нормали z к поверхности льда на угол a. Предполагаем, что вес частей тела фигуриста, головы, двух рук и туловища известен. Обозначим вес этих частей тела соответственно РГ, РР и РТ. Весовые доли соответственно kГ, kР, kТ.

Предполагаем, что фигурист скользит с известной скоростью n, стопорящее действие конька о лед происходит с силой F, а группировка рук в момент отрыва фигуриста ото льда происходит мгновенно.

Для построения математической модели создания начального вращения стопорящим действием конька о лед в общем центре масс о.ц.м. фигуриста прикладывается самоуравновешенная система двух сил, линия действия которых параллельна линии действия силы F стопорящего действия конька о лед. Из полученной таким oбpaзом системы сил, эквивалентной начальной по действию на фигуриста, выделяется пара сил, которая и создает начальное вращение.

Начальную скорость w вращения фигуриста в прыжке находим, используя теорему об изменении кинетической энергии вращения:

,

где Т0 и Т - кинетическая энергия вращения фигуриста в начальный и произвольный моменты времени стопорящего действия конька о лед, Аа - работа пары сил вращения фигуриста.

Учитывая, что в начальный момент времени стопорящего действия конька о лед кинетическая энергия вращения фигуриста равна нулю (Т0=0), а в произвольный момент времени определяется выражением

, получим:

.

(1)

Работу пары сил вращения определяем как работу силы стопорящего действия конька о лед при повороте фигуриста на угол j перед его отрывом ото льда

.

Подставляя выражение для работы Аа в уравнение (1), после несложных преобразований получим формулу для определения скорости w вращения фигуриста в момент его отрыва ото льда:

.

(2)

Нами получено и выражение для определения силы F стопорящего действия конька о лед по экспериментальным динамическим параметрам

,

(3)

где М - масса фигуриста, D.gif (850 bytes)v=v0-v*, n0 и n* - скорости его о.ц.м. в момент начала стопорящего действия конька о лед и соответственно его отрыва ото льда, x* - длина следа стопорящего действия конька о лед.

Положение о.ц.м. фигуриста на его оси x, то есть величина АС, определяется на основании свойств системы параллельных сил веса его головы РГ, веса рук РР и веса туловища РТ.

AC = (1-kТ)LТ +kГ r,

(4)

где LТ и r - соответственно длина туловища и радиус головы.

Для принятой механической модели фигуриста определяется ее момент инерции JZ относительно нормали к поверхности льда:

JZ = JZГ + JZP + JZT;

(5)

где JZГ, JZP и JZT - моменты инерции относительно нормали z головы, рук и туловища фигуриста, которые выражаются через антропометрические параметры фигуриста.

Подставляя (3), (4) и (5) в (2), получим в аналитической форме выражение для угловой скорости вращения фигуриста перед отрывом ото льда до группировки:

.

(6)

В момент отрыва ото льда фигурист группируется и вращается вокруг своей оси x. Предполагается, что группировка увеличивает только массу туловища фигуриста и не изменяет его форму и объем. При этом условии находится осевой момент инерции Jx :

.

(7)

В полете после группировки кинетический момент фигуриста не изменяется:

,

(8)

где - скорость вращения фигуриста в полете после группировки.

Подставляем (5), (6) и (7) в (8) и получаем многопараметрическую зависимость скорости вращения фигуриста в полете, которая создается стопорящим действием конька о лед:

.

Если начальное вращение создается еще и закручиванием тела фигуриста, то его кинетический момент К увеличивается:

,

где - кинетический момент фигуриста до группировки, который создается стопорящим действием конька о лед; КЗТ - кинетический момент фигуриста до группировки, который создается закручиванием тела и определяется нами [1] через скорость вращения плеч перед его отрывом ото льда:

.

Закон сохранения кинетического момента фигуриста в полете при создании начального вращения в прыжках стопорящим действием конька о лед и закручиванием тела принимает вид:

,

где - начальная скорость вращения фигуриста после группировки.

Из этого закона, опуская промежуточные математические выкладки, получаем многопараметрическое аналитическое выражение для определения скорости w* вращения фигуриста в полете, которая создается совместно стопорящим действием конька о лед и закручиванием тела:

,

где E = kГ A + kP B + kT C,

N = (0,4)kГ r2 + (8/3)kP LP2 +(0,25) kT RК2;



,

Rк и Lр - соответственно радиус основания конуса и длина руки.

Наиболее существенными динамическими параметрами, как показали расчеты, которые влияют на скорость вращения фигуриста в полете и, следовательно, на многооборотность исполняемых прыжков, являются угол phi.gif (64 bytes)поворота фигуриста, длина ee.gif (850 bytes)* следа при стопорящем действии конька о лед, угол a отклонения фигуриста от нормали к поверхности льда, разность скоростей скольжения в моменты начала и конца стопоряще го действия конька о лед и скорость вращения плеч фигуриста в момент отрыва его ото льда.

Фигурист знает, что естественное стремление к повороту на угол phi.gif (64 bytes)= 90° при отрыве ото льда значительно усложняет технику исполнения прыжка. Однако он должен знать, что можно значительно уменьшить угол phi.gif (64 bytes), упростить исполнение прыжка и незначительно потерять в скорости вращения. Так, например, при phi.gif (64 bytes)= 50° потеря в скорости вращения не превышает 12%.

Сокращение длины ee.gif (850 bytes)* следа стопорящего действия конька о лед приводит к увеличению скорости вращения в полете. Сокращение длины ee.gif (850 bytes)* следа с 0,5 до 0,1 м может привести к увеличению скорости вращения в полете в 2 раза.

Увеличение угла a отклонения фигуриста от нормали к поверхности льда приводит к увеличению момента пары сил, которая создает начальное вращение фигуриста. Увеличение этого угла может в 3 раза увеличить скорость вращения фигуриста в полете.

Увеличение скорости вращения плеч в 4 раза позволяет увеличить скорость вращения фигуриста в полете в 2-3 раза.

Таким образом, моделирование двигательных действий фигуриста при исполнении прыжков позволяет количественно оценить влияние параметров на многооборотность прыжков и научно обоснованно ориентировать усилия тренера и фигуриста при организации тренировочного процесса.

Влияние как динамических, так и антропометри ческих параметров на увеличение многооборотности прыжков можно оценить по приведенным в статье формулам у любого конкретного фигуриста.

Список литературы

1. Виноградова В.И. Движение фигуриста при создании начального вращения в прыжках закручиванием тела //Теор. и практ. физ. культ. 1993, №1, с. 13-16.

2. Мишин А.Н. Биомеханика движений фигуриста. - М.: ФиС, 1976. - 141 с.

Для подготовки данной работы были использованы материалы с сайта http://lib.sportedu.ru/



1. Сочинение на тему Семья Мармеладовых и ее роль в романе Преступление и наказание
2. Курсовая Осложнения при эксплуатации промысловых трубопроводов
3. Реферат Роль США
4. Реферат на тему The Articles Of Confederation Essay Research Paper
5. Реферат на тему Originality Of Philosophy Essay Research Paper Originality
6. Курсовая на тему Инфологическое моделирование базы данных Абитуриент
7. Диплом на тему Общественно-политические взгляды ПН Ткачева
8. Реферат Компьютерный жаргон 3
9. Реферат Армяне в Греции
10. Курсовая Принятие управленческих решений на основе маржинального анализа