Реферат

Реферат Интеллектуальные UPS Источники бесперебойного питания

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024



Интеллектуальные UPS (Источники бесперебойного питания)

Реферат по курсу «Архитектура ЭВМ»

Исполнитель: студент группы ИУ5-51 Выломова Е. А.

Московский государственный технический университет им. Н. Э. Баумана

Москва, 2004

Введение

Наверное, обычный пользователь и не подозревает, каким опасностям он подвергает свой компьютер, подключая его к обыкновенной сети электропитания. Казалось, чего проще: воткнул штекер в розетку - и работай на здоровье. Однако в результате не получается ни работы, ни здоровья: сколько раз вам приходилось хвататься за сердце при виде внезапно гаснущего монитора, осознавая безвозвратную потерю набиравшегося в течение нескольких часов текста? И если бы дело ограничивалось только пропаданием напряжения в электросети, - "электрические демоны" изощренны и коварны, их обличия разнообразны, имя им легион: броски напряжения, электромагнитные наводки, грозовые разряды...

Типичные сбои в сети электропитания

Перенапряжение (англ. surge) - повышение напряжения электросети продолжительностью не менее 0,008 с.

Импульсивный бросок напряжения (spike) - мгновенное значительное повышение напряжения. Обычно вызывается ударом молнии или случается в момент возобновления подачи напряжения.

"Проседание" напряжения (brownout) - падение напряжения более чем на 10%.

Пропадание напряжения (blackout) - полное отключение сети электропитания.

Электромагнитная помеха (electromagnetic interference, EMI) может вызываться переключением нагрузки, грозовым разрядом, работой генераторов либо другими источниками помех. Приводит к отклонению формы напряжения от правильной синусоиды.

Радиочастотная помеха (radiofrequency interference, RFI) - частичный случай электромагнитной помехи .

Сбои в сети, как мы убеждаемся, имеют самые различные формы и виды. Так что если у компьютера или принтера не перегорает блок питания, это не значит, что ваша техника не подвергается постоянным атакам со стороны "электрических демонов". Не стоит полагаться только на обоняние (гарь) и зрение (дым, погасший монитор). Электромагнитные и радиочастотные помехи не менее опасны, чем пропадание или скачок напряжения, поскольку приводят к отклонению формы напряжения от правильной синусоиды, что вызывает искажения и ошибки в файлах программ и данных.

Справиться с укрощением всех "электрических демонов" способны лишь ИБП (UPS) - источники бесперебойного питания, речь о которых пойдет ниже. Конечно, сетевые фильтры смогут защитить аппаратное обеспечение компьютера от разрядов и помех, но справиться с "проседанием" и полным пропаданием напряжения способны только "источники". Кроме того, последние обязательно оснащаются системой подавления разрядов и шумов, что делает их универсальной защитой электронно-вычислительной техники.

Первое и самое главное назначение источника бесперебойного питания - обеспечить электропитание компьютерной системы или другого оборудования в то время, когда электрическая сеть по каким-то причинам не может это делать. Во время такого сбоя электрической сети ИБП питается сам и питает нагрузку за счет энергии, накопленной его аккумуляторной батареей.

Каждый человек, сталкивающийся с компьютерами, рано или поздно узнает о великолепной идее бесперебойного питания компьютеров. Если этот человек имеет инженерное образование и творческую жилку, он немедленно начинает изобретать "велосипед", придумывая, как бы можно было сделать такую штуку. Как правило, люди в этой ситуации придумывают одну и ту же схему, которая им кажется наиболее естественной и простой. Эта схема традиционно называется схемой с двойным преобразованием энергии.

Классификация ИБП

ИБП с двойным преобразованием энергии (англ. – Double conversion UPS)

Основная идея этой схемы действительно очень проста. Компьютер питается от сети переменного тока. Значит на выходе ИБП должен выдавать переменный ток. И на входе ИБП тоже должен потреблять переменный ток, поскольку он питается от той же электрической сети. Но внутри ИБП (где-то в середке) должно быть постоянное напряжение, потому что оно необходимо для питания аккумуляторной батареи.

ris-04.gif (1287 bytes)

Рис. 4. ИБП с двойным преобразованием энергии.

Таким образом мы получаем нашу первую схему источника бесперебойного питания. Вся мощность, потребляемая ИБП от сети, сначала преобразуется из переменного тока в постоянный с помощью выпрямителя. После этого в действие вступает преобразователь постоянного тока в переменный - инвертор, обеспечивающий на выходе ИБП необходимое переменное напряжение.

Аккумуляторная батарея, как ей и положено, находится в цепи постоянного тока, между выпрямителем и инвертором. Если в сети нормальное напряжение, выходного тока выпрямителя хватает для работы инвертора и для подзаряда батареи.

Когда напряжение в сети становится таким маленьким, что выпрямитель уже не может обеспечить полноценную работу инвертора, аккумуляторная батарея заменяет выпрямитель и питает инвертор требующимся ему постоянным током. Инвертор, в свою очередь, продолжает, как ни в чем ни бывало, подавать напряжение к компьютеру.

Но замена выпрямителя батареей не совсем полноценна: батарея может питать инвертор только ограниченное время, которое зависит от накопленного ею заряда и мощности компьютерной системы. Как правило, это время исчисляется минутами или десятками минут.

Придуманная нами схема ИБП традиционно называется (по понятным теперь причинам) схемой с двойным преобразованием энергии. Она изображена на рис. 4. Эта схема (тоже традиционно) называется еще схемой on-line (он лайн). Этот английский, или, вернее, американский, термин плохо поддается переводу. Буквально on-line означает нечто, постоянно подключенное к сети.

Как мы увидим дальше, не только схема с двойным преобразованием энергии претендует на почетное в компьютерных кругах звание on-line. Поэтому в дальнейшем я постараюсь не злоупотреблять этим термином и буду называть ИБП по их характерным схемным отличиям.

Современные ИБП с двойным преобразованием энергии построены намного сложнее придуманной нами схемы. Подробнее о них мы поговорим в главе, посвященной этим устройствам.

Возможно вы уже заметили одно характерное свойство этой схемы ИБП, которое, в зависимости от точки зрения, можно считать недостатком или преимуществом. Речь идет о том, что наиболее важные части ИБП - выпрямитель и инвертор интенсивно работают даже тогда, когда в сети есть вполне нормальное напряжение, от которого мог бы питаться ваш компьютер. Это видимо приводит к уменьшению ресурса этих частей ИБП, усложнению схемы и бесполезному расходу энергии (ведь стопроцентного КПД не бывает).

-Не беда - скажем мы, и придумаем другую схему источника бесперебойного питания.

ИБП с переключением (англ. – standby UPS или off-line UPS)

Попытаемся использовать приятные моменты, когда напряжение в электрической сети "нормальное" (не разбираясь сейчас, что это значит). В это время компьютер можно напрямую питать от электрической сети, не теряя энергию на два не нужных сейчас преобразования. А инвертор мы запустим в момент сбоя электрической сети (когда напряжение перестанет быть "нормальным"), и он будет работать от батареи.

Реализующая эту идею схема изображена на рис. 5.

ris-05.gif (1683 bytes)

Рис. 5. ИБП с переключением

Когда в сети нормальное напряжение, компьютер (или другая нагрузка ИБП) работает непосредственно от сети. В это время маломощный выпрямитель подзаряжает батарею ИБП. Если напряжение становится "ненормальным" или совсем исчезает, показанный на схеме переключатель срабатывает, включается инвертор, и ИБП начинает питать нагрузку от своей батареи.

ИБП с переключением имеет высокий КПД, поскольку при нормальной работе потребляет только энергию, необходимую для питания своей схемы и, если батарея разряжена, то для ее подзаряда.

О других преимуществах, а также о многочисленных недостатках, которые (как и все на свете) имеет ИБП с переключением, мы подробно поговорим в соответствующей главе.

Может быть самым серьезным из недостатков является то, что при переключении ИБП с режима работы от батареи на режим работы от сети, на выходе ИБП могут возникать скачки напряжения. При неблагоприятной фазе напряжения в момент переключения блок питания компьютера не сможет их погасить. В этом случае на чувствительных электронных компонентах компьютера возникают импульсные напряжения. Сами по себе они не опасны, но в сочетании с другими помехами в принципе могут быть причиной сбоя при работе компьютера.

У скачкообразного изменения напряжения несколько причин.

Во время работы от батареи, напряжение на выходе ИБП с переключением несинусоидальное (оно имеет вид чередующихся прямоугольным импульсов с паузами).

Во время переключения (которое занимает от 2 до 20 миллисекунд для разных моделей ИБП) на выходе ИБП отсутствует напряжение. Следовательно, имеется небольшой разрыв в напряжении, питающем компьютер.

Почти единственная функция ИБП с переключением - поддержание работы компьютера, когда в сети нет напряжения. Но он не может эффективно взаимодействовать с электрической сетью и следить за отсутствием искажений сетевого напряжения, а также регулировать напряжение, когда оно становится слишком маленьким или чересчур большим.

Нашим ответом на эту неприятность будет следующая схема. Она так и называется: ИБП, взаимодействующий с сетью (англ. - Line Interactive UPS).

ИБП, взаимодействующий с сетью (англ. - Line Interactive UPS).

Упрощенная блок-схема ИБП, взаимодействующего с сетью, представлена на рис. 6.

Если разобраться, она очень похожа на предшествующую схему. Переключатель переехал ближе к входу, инвертор этого ИБП постоянно подключен к нагрузке. Кроме того, в нашей новой схеме появился автотрансформатор. Честно говоря, он, как правило есть и в ИБП с переключением, но для ИБП, взаимодействующего с сетью, его наличие принципиально.

У этого автотрансформатора есть дополнительные отводы, к которым может быть подключена нагрузка при работе ИБП от сети. В результате напряжение на выходе ИБП иногда становится не таким, как на входе. С помощью автотрансформатора с отводами ИБП регулирует напряжение (увеличивает выходное напряжение, когда напряжение на входе мало и уменьшает напряжение на выходе, если входное напряжение слишком повысилось).

ris-06.gif (1950 bytes)

Рис. 6. ИБП, синхронизованный с сетью.

Взаимодействующий с сетью ИБП постоянно следит за напряжением: его величиной и формой. Для этого управление ИБП, взаимодействующего с сетью, поручено микропроцессору. Обычно микропроцессор нагружают множеством дополнительных функций, не связанных непосредственно со слежением за сетью и управлением, и некоторые из этих ИБП становятся довольно "умными": Они могут регистрировать напряжение в электрической сети, следят за временем и частотой, запоминают свои аварийные сообщения, включаются по расписанию и т.д.

Работает ИБП, взаимодействующий с сетью, примерно так же, как и ИБП с переключением. Когда в сети "нормальное" напряжение, он питает нагрузку от сети. Если напряжение отсутствует или искажено, то инвертор мгновенно начинает питать нагрузку, разряжая батарею, а входной переключатель ИБП размыкается.

Если напряжение в сети есть, но заметно меньше (или больше) нормы, то взаимодействующий с сетью ИБП переключает отводы автотрансформатора и регулирует напряжение, не переключаясь на батарею.

Как и ИБП с переключением, ИБП, взаимодействующий с сетью, имеет высокий КПД и некоторые другие преимущества.

Принципиальным, но не самым важным, недостатком этой схемы (как и ИБП с переключением) является разрыв электропитания в момент переключения на работу от батареи и обратно. Этот разрыв является следствием использования механических переключателей. Время их срабатывания довольно мало (несколько миллисекунд), но отлично от нуля.

Как было бы здорово, если бы внутри ИБП во время, пока срабатывает переключатель, напряжение на нагрузке поддерживалось бы какой-нибудь очень умной штукой. Эта штука была изобретена американцем Джозефом Солой в 1938 году, и называется феррорезонансным трансформатором.

Феррорезонансный ИБП ( англ. – Ferroresonant UPS)

Феррорезонансный ИБП в какой-то степени является разновидностью ИБП, взаимодействующих с сетью. Тем не менее его обычно выделяют в отдельную группу ИБП. Дело в том, что в схему этого ИБП введен элемент, принципиально меняющий его работу, и давший название этому прибору.

Это феррорезонансный трансформатор. Он включен в схему феррорезонансного ИБП вместо автотрансформатора с отводами в схеме ИБП, взаимодействующего с сетью.

Коротко говоря, его функции заключаются в следующем. Он стабилизирует напряжение на выходе ИБП. Это позволяет работать в широком диапазоне сетевых напряжений без переключения на батарею. Нет никаких переключений и внутри самого ИБП (феррорезонансный трансформатор регулирует напряжение, не нуждаясь в переключении отводов).

ris-07.gif (1991 bytes)

Рис. 7. Феррорезонансный ИБП.

Феррорезонансный трансформатор имеет значительную индуктивность. Во время работы ИБП от сети в магнитном поле трансформатора накапливается большая энергия, которая питает нагрузку во время переключения на работу от батареи. Поэтому выходное напряжение феррорезонансного ИБП не имеет разрыва в момент исчезновения напряжения в электрической сети. Это свойство дает возможность изготовителям феррорезонансных ИБП вполне обоснованно рекламировать их, как on-line ИБП.

Кроме отсутствия разрыва напряжения и плавного регулирования напряжения, феррорезонансный ИБП имеет и другие свойства, характерные для ИБП с двойным преобразованием энергии.

Пpогpаммное обеспечение для монитоpинга UPS

Существует два вида монитоpных интеpфейсов UPS, не считая упpавления чеpез SNMP-адаптеp - "Dumb Interface" (в теpминах American Power Conversion - "simple signalling scheme") и "Smart Interface" ("smart signalling scheme"). Рассмотpим их более

подpобно.

Dumb Interface

Это стаpый и пpимитивный тип интеpфейса, пpедоставляющий лишь cамую минимальную инфоpмацию о состоянии UPS. Он имеет тpи сигнальных линии:

 "AC Failure": сигнал от UPS к упpавляющему обоpудованию. Сообщает о пеpеходе UPS на батаpейное питание;

 "Battery Low": сигнал от UPS к упpавляющему обоpудованию. Сообщает о том, что батаpея достигла кpитического уpовня pазpяда и в скоpом вpемени не сможет обеспечить pезеpвного питания;

 "Shutdown UPS": сигнал от упpавляющего обоpудования к UPS. Подача напpяжения 6..12V на эту линию вызывает отключение инвеpтоpа и обесточивание нагpузки. Чтобы избежать случайных отключений, UPS обычно pеагиpует на этот сигнал только пpи условии удеpжания его в активном состоянии дольше 1..4 секунд и только во вpемя pаботы от батаpей.

Логика pаботы пpогpаммы-монитоpа, следящей за UPS чеpез Dumb Interface, достаточно пpоста. Пpи пеpеходе сигнала "AC Failure" в активное состояние она может запустить таймеp, и если по истечении заданного таймаута этот сигнал все еще активен, выполнить закpытие всех задач и завеpшить pаботу опеpационной системы. Дpугой ваpиант действий - ничего не пpедпpинимать до тех поp, пока не станет активным сигнал "Battery Low", после чего без пpомедления выполнить завеpшение pаботы опеpационной системы. Возможны также некие комбинации из этих двух методов. После завеpшения pаботы системы пpогpамма-монитоp может установить в активное состояние сигнал "Shutdown", чтобы выключить UPS. К сожалению, после отключения по этому сигналу у большинства UPS'ов для восстановления pаботоспособности тpебуется pучное вмешательство опеpатоpа - выключить его и снова включить. Автоматическое включение в этом случае не пpоисходит, т.к. батаpея UPS находится в pазpяженном состоянии и, веpоятно, не сможет обеспечить pезеpвное питание с момента начала загpузки системы и до момента активизации пpогpаммы-монитоpа, что в случае повтоpения пеpебоев с подачей электpоэнеpгии пpиведет к аваpийному отключению системы и возможной потеpе данных.

Истоpически сложилось так, что pанние модели UPS, оснащенные Dumb Interface, тpебовали для pаботы с ним специальную плату - UPS Monitor Board (упоминания о ней можно встpетить, напpимеp, в Novell Netware 3.1x - входящий в ее состав модуль UPS.NLM pассчитан на pаботу именно с такой платой). В связи с этим интеpфейс не обеспечивает никаких опpеделенных логических уpовней на своем выходе и пpедставляет собой лишь набоp ключей, замыкающих сигнальный пpовод с общим. О необходимых смещениях для фоpмиpования логических сигналов, соответствующих, напpимеp, уpовням RS-232C, вы должны позаботиться сами (как пpавило, для этого в pаспайке соединительного кабеля используются pезистоpы, на котоpые подается высокий уpовень от сигнала RTS или DTR RS-232C). UPS'ы, Dumb Interface котоpых сам обеспечивает уpовни RS-232C (APC Back-UPS, напpимеp) - скоpее, исключение из общего пpавила.

В очень стаpых моделях, по слухам, в качестве ключей пpименялись обычные геpконовые pеле (отсюда и название - Contact Closure Type). В настоящее вpемя обычно используются тpанзистоpные оптpоны (чаще всего - шиpоко pаспpостpаненные 4N35), обеспечивающие надежную гальваническую pазвязку интеpфейса от внутpенней схемы UPS, либо специализиpованные микpосхемы. Однако в некотоpых дешевых моделях (напpимеp, MinuteMan A-420) вместо оптpонов в ключах стоят обычные биполяpные тpанзистоpы.

Smart Interface

Это более совpеменный тип интеpфейса, использующий стандаpтный поpт RS-232. Работа чеpез него пpедполагает наличие в UPS достаточно pазвитой системы самодиагностики и опpеделенного набоpа команд, с помощью котоpого пpогpамма-монитоp может упpавлять источником и опpашивать его текущее состояние. Hабоp контpолиpуемых паpаметpов может включать в себя, напpимеp, действующее значение напpяжения в сети и его частоту, то же самое для напpяжения питания нагpузки, потpебляемую нагpузкой мощность, уpовень заpяда батаpей, темпеpатуpу внутpи коpпуса UPS и т.п. Кpоме того, такие UPS часто имеют таймеp (или часы pеального вpемени), котоpый можно запpогpаммиpовать на включение нагpузки в заданное вpемя.

Обладатели APC Smart-UPS, напpимеp, могут попpобовать "пообщаться" со своим UPS'ом. Выгpузите PowerChute UPS Monitor и запустите теpминальную пpогpамму, настpоенную на 2400/8N1. Введите "Y" (без кавычек), получите ответ "SM", подтвеpждающий начало обмена в pежиме smart signalling. Hо не увлекайтесь нажиманиями клавиш - если вы случайно войдете в pежим пpогpаммиpования внутpенних констант, то получите хоpоший шанс дальнейшими нажатиями кнопок пpивести UPS в состояние полной неpаботоспособности. Ради того, чтобы удовлетвоpить любопытство, огpаничьтесь командами "B" и "L", возвpащающими соответственно напpяжение батаpеи и питающей электpосети в вольтах. А затем завеpшите сеанс связи командой "R", получив ответ "BYE". Имейте в виду, все команды - case-sensitive, так что "B" и "b" пpоизводят pазные действия (последняя возвpащает условные коды модели, pевизии микpопpоцессоpа и напpяжения электpосети, на котоpое эта модель pассчитана).

Как пpавило, UPS'ы, оснащенные Smart Interface, имеют и Dumb Interface для совместимости со стаpыми системами. Это несложно обеспечить, поскольку для обмена по RS-232 необходимо всего тpи линии (TxD, RxD и GND), и оставшихся 6 контактов на pазъеме DB-9 вполне хватает для всех dumb'овых сигналов.

Схемы интеpфейсов и кабелей для UPS(American Power Conversion (APC))

APC Simple Signalling Cable (Dumb)

APC Smart Signalling Cable

APC Back-UPS Pro Cable

APC Smart UPS DB9 interface connector pinout

















Расшифровка версии UPS при подаче команды "V"

Первый символ в версии UPS - коммерческое название модели UPS соответствует нижеприведённой таблице.



0

Matrix 3000

5

Matrix 5000

2

Smart-UPS 250

3

Smart-UPS 400

4

Smart-UPS 400

6

Smart-UPS 600

7

Smart-UPS 900

8

Smart-UPS 1250

9

Smart-UPS 2000

A

Smart-UPS 1400

B

Smart-UPS 1000

C

Smart-UPS 650

D

Smart-UPS 420

E

Smart-UPS 280

F

Smart-UPS 450

G

Smart-UPS 700

H

Smart-UPS 700XL

I

Smart-UPS 1000

J

Smart-UPS 1000XL

K

Smart-UPS 1400

L

Smart-UPS 1400XL

M

Smart-UPS 2200

N

Smart-UPS 2200XL

O

Smart-UPS 3000

P

Smart-UPS 5000

Q

Back-UPS



Второй символ в версии UPS - версия набора команд управления UPS

W - расширенная для 3 поколения Smart-UPS

Q - Для второго поколения Smart-UPS

T - типовая для 1 поколения Smart-UPS

U - ультра для модульных и наращиваемых UPS

Третий символ в версии UPS - аппаратная версия номинального выходного напряжения UPSD - для внутреннего использования (USA )

I - выходное напряжение 240в (интернациональная версия )

M - выходное напряжение 208в (для военного применения )

J - выходное напряжение 100/200в (для Японии )





Приложение 3

Таблицы.

При калибровке UPS необходимо выставлять регистры 4, 5, 6 согласно таблице. Это не относится к регистру "0", так как он определяет ёмкость батарей и со временем меняется. В таблице приведено его начальное значение. Обратите внимание что у UPS с программой REV7 данные по регистрам отличаются от данных других ревизий. Предполагаю, что существует две таблицы для UPS с REV7 и для прочих, которые здесь объединены.

Таблица регистров 4,5,6 EEPROM .

UPS

Регистр 4

Регистр 5

Регистр 6

Регистр 0

Прим.

2G 250I

отсутствует

EE

F8

7E

 

SU 420

25

95

09

 

 

SU 420 I

0E

95

0A

 

 

SU450

28

F2

FA

96

 

SU450

28

EE

F8

9F

Rev7

SU600

отсутствует

EA

F4

-------

 

SU 620

29

99

0B

-------

 

SU 620

10

97

0A

99

 

SU620(2001г)

10

97

0B

99

Rev7

SU700

28

EE

F8

9F

Rev7

SU 700 I

28

F2

FA

96

 

SU 700RM2U

07

B1

0D

92

 

SU700 XL

45

EF

F9

 

 

SU700XL

17

EE

F9

9F

Rev7

SU700RM

28

EE

F8

9F

Rev7

SU 1000RMI

35

EF

F9

A0

 

SU1000XL

35

EE

FC

9A

 

SU1000XLJ

35

EE

FC

9A

 

SU1000

28

F3

FC

9F

Rev7

SU1000XL

17

EE

F9

9F

Rev7

SUA1000I (2002г USB)

07

B5

13

A8

 

SU1250

отсутствует

EE

FA

9F

 

SU1400

35

EE

FC

9A

 

SU1400

17

EE

F9

9F

Rev7

SU1400RM

28

ED

FA

89

 

SU1400RM

11

F1

FC

83

Rev7

SU1400XL

45

F6

F4

80

 

SU1400XLI

45

F6

F4

80

 

SU1400XLT

45

F6

F4

80

 

SU1400RMXLT

45

F6

F4

80

 

SUA1500I

(2002г)

09

B9

13

A1

 

SU2200

35

EE

FB

AF

 

SU2200

28

F1

F9

9F

Rev7

SU2200XL

35

EE

FB

AF

 

SU220XL

28

F1

F9

9F

Rev7

SU2200XLINET

35

EE

FB

8B

 

SU3000

35

EE

FB

AF

 

SU3000(2003г)

35

EE

FB

96

Rev14

SU3000XL

28

F1

F9

B0

Rev7

Matrix 5000

отсутствует

F9

E5

B0

 

BP280

10

95

0B

 

 

BP420

25

95

09

 

 

BP420SI 11.4.I

0E

95

0A

 

 

BP300

28

F2

FA

 

 

BP500

45

EE

F5

 

 

BP650

29

99

0B

 

 



Время работы от батарей в зависимости от нагрузки в минутах.

Model

450

700

1000

1400

2200

3000

3000 w/ ext. batt.

50 VA

100

140

150

251

366

297

640

75 VA

77

113

125

199

309

258

557

100 VA

54

85

100

163

268

228

491

150VA

33

55

75

118

209

183

394

200 VA

22

38

58

90

170

152

328

250 VA

15

26

44

71

142

128

281

300 VA

11

20

36

57

121

110

245

350 VA

8

17

28

47

104

96

216

400 VA

5

14

24

39

91

84

193

450 VA

4

11

20

33

80

75

174

500 VA

-

9

18

29

71

67

157

550 VA

-

8

15

25

64

60

143

600 VA

-

6

13

21

57

54

131

700 VA

-

5

11

18

46

44

112

800 VA

-

-

9

15

38

36

96

900 VA

-

-

7

12

32

31

84

1000 VA

-

-

6

11

27

26

73

1200 VA

-

-

-

8

21

20

58

1400 VA

-

-

-

7

17

16

46

1600VA

-

-

-

-

14

13

37

2000 VA

-

-

-

-

10

10

26

2200 VA

-

-

-

-

8

8

22

2500 VA

-

-

-

-

-

7

18

3000 VA

-

-

-

-

-

5

13



Таблица прошивки EEPROM 93C46 прочитанная с блока SMART-700.

Адрес

Шестнадцатиричные данные.

 

Коментарий.

0x00

AD

5B

FO

E1

2F

5E

00

00

00

00

00

00

07

0E

21

42

 

 

 

0x10

00

00

28

50

FA

F5

F3

E7

55

AA

F2

E5

00

00

55

AA

 

 

0x20

50

A0

53

A6

5F

BE

37

6E

30

60

30

60

53

A6

30

60

UPS_700S

ИмяUPS

0x30

31

62

2F

5E

30

60

31

62

2F

5E

30

60

30

60

30

60

01/01/00

Замена батарей.

0x40

38

70

2F

5E

32

64

37

6E

2F

5E

39

72

36

6C

67

CE

08/27/96

Дата изготовления

0x50

73

E6

39

72

36

6C

33

66

35

6A

31

62

38

70

30

60

gs9635180

Серийный

0x60

30

60

32

64

39

72

20

40

20

40

00

00

01

02

01

02

029

номер.

0x70

00

00

02

04

01

02

00

00

03

06

00

00

01

02

00

00

 



 По этой таблице можно определить назначение ячеек ПЗУ. Таблица приведена как пример для ознакомления. Нужно учесть, что прошивки разных UPS кардинально разные.

Приложение 4.

Схема Smart .Часть1.



Приложение 5.

Схема Smart. Часть2.



Приложение 6.

Схема Smart. Часть3.



Список литературы

1. П.Ю. Виноградов, В.В. Маракулин,К.К. Никитин, Н.Н.Патлых, Б.Г. Шамсиев.

“Источники бесперебойного питания телекоммуникационных средств и вычислительной техники”

2.А.А.Лопухин “Источники бесперебойного питания без секретов”

3. Uninteruptable Power Source (UPS) FAQ.

Для подготовки данной работы были использованы материалы с сайта http://referat.ru/



1. Реферат на тему Тиглатпаласар I история Асиирии
2. Контрольная работа Философия Нового времени 13
3. Биография на тему Петр I Великий Жизнеописание
4. Реферат Эмоции и воля. Эмоционально-волевая регуляция в професииональной деятельности
5. Курсовая Социологическое исследование внутренней среды организации
6. Контрольная_работа на тему Отримання зображень з допомогою компютерної графіки
7. Реферат Духовная жизнь общества 3
8. Реферат Хронологический проект Ся-Шан-Чжоу
9. Реферат Controlling Corruption Essay Research Paper Corruption is
10. Реферат на тему Sir Isaac Newton Essay Research Paper Isaac