Реферат Группы преобразований
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
Группы преобразований
1.Перемещения
Пусть X - множество всех точек прямой
Примеры.
1. Пусть в
Отметим, что
v)sinj +v(1-cosj)(R
×
v) . Все точки оси поворота являются неподвижными.
2. Перемещением будет и параллельный перенос
R = R +
v . Неподвижных точек перенос не имеет.
3. Пусть l некоторая прямая в
n)n .
Переносы и отражения (примеры 2 и 3) можно рассматривать и в
4. Композиция U*V (последовательное выполнение ) двух перемещений U и V снова будет перемещением: (U*V)(P) = U(V(P)). Например,
2. Связь с линейными операторами.
Теорема 1
Пусть f: X ® X - перемещение, A, B, C, D - точки X, f(A) = A и т.д. Если AB = CD (как свободные векторы), то A
B = C
D .
Доказательство.
Достаточно проверить, что в условиях теоремы четырехугольник ABDC является параллелограммом. Пусть О точка пересечения диагоналей AD и BC. Принадлежность точки О отрезку АD равносильно равенству: d(A, O) + d(O, D) = d(A, D). Поскольку для образов этих точек имеет место аналогичное равенство d(A , O) + d(O, D) = d(A , D) , мы видим, что O лежит на отрезке AD и делит его пополам, поскольку d(A , O) = d(A ,O) = 1/2 d(A ,D) = 1/2 d(A , D) . Аналогично, O лежит на CD и делит его пополам. Следовательно, ABDC - параллелограмм.
Из теоремы 1 следует, что если
Отметим, что если О - некоторая фиксированная точка X, то для любой точки P точка f(P) получается из O переносом на вектор f*(OP). Отсюда вытекает, что перемещение f однозначно определяется отображением f* и точкой O .
Теорема 2.
Отображение f* является линейным оператором в V и сохраняет скалярное произведение.
Доказательство.
Свойство f*(u + v) = f*(u) +f*(v) следует из определения сложения векторов : если u = AB , v = BC , то u + v = AC. Так как при перемещении любой треугольник ABC переходит в равный треугольник, то сохраняются не только длины, но и углы между векторами, а значит и скалярное произведение. Наконец, использую сохранение скалярного произведения, имеем:
Следствие
Отображение
Как известно, оператор в конечномерном пространстве определяется своей матрицей. Матрица A оператора, сохраняющего скалярное произведение, называется ортогональной и имеет следующие свойства:
1. Матрица А невырождена, более того det(A) =
2. Все собственные значения A - комплексные числа по модулю равные 1.
Кроме того, известны простейшие формы ортогональных матриц в ортонормированном правом базисе. Эти простейшие формы указаны в следующей таблице:
dimV | det(A) = 1 | Название | det(A) = -1 | Название |
1 | I = (1) | Тождест-венный оператор | s = (-1) | Отраже-ние |
2 | | Поворот на угол j | | Отраже-ние |
3 | | Поворот на угол j вокруг OZ | | Зеркаль-ный пово-рот |
Замечание 1.
Учитывая связь между перемещением f и оператором f*, можно утверждать, что в подходящей декартовой системе координат имеет место формула:
R = АR + v , где А - одна из матриц из таблицы, а v - некоторый вектор. Следовательно, всякое перемещение f имеет обратное
Замечание 2.
Имеется существенное различие между математическим понятием перемещения и физическим понятием движения. Во втором случае имеется в виду непрерывное во времени изменение положения точки, в то время как в первом фиксируются только ее начальное и конечное положения.
Перемещения с det(A) = 1 можно представлять себе и как движения, в то время как при det(A)= -1 такое представление невозможно, если оставаться в пределах исходного пространства X.
3.
Классификация перемещений.
Напомним, что нам уже известны некоторые перемещения. Перемещениями прямой
Для случая плоскости
Наконец, для пространства
Отметим, что некоторые из указанных выше перемещений являются частными случаями других. Например, тождественное перемещение можно рассматривать как перенос на нулевой вектор (или как поворот на нулевой угол), отражение
Теорема 3 .
Каждое перемещение f в
1. n = 1
2. n = 2
3. n = 3
Доказательство.
Как уже отмечалось, можно выбрать такой ортонормированный базис, что перемещение f имеет вид R = АR + v , где v - некоторый вектор. Если изменить начало координат : R = r + u , R = r + u , получаем: r = Ar + v , где v = Au -u +v = (A - E)u + v .Мы видим, что если число 1 не является собственным значением матрицы А (или, если угодно, оператора f*) , то можно выбрать u так, что в новой системе координат v = 0 . (Поскольку матрица A - E невырождена). Тем самым утверждение теоремы доказано при n=1 и при n=2 в случае det(A) = 1 (так как собственные значения
В случае матрицы
0 , что приводит к зеркальному повороту
, а при j=2pn - v =
и получается скользящее отражение
.
Замечание. ( о параметрах перемещений)
Параметр
для поворота плоскости
будем считать изменяющимся mod 2p т. е.
=
. Такое же соглашение будем использовать и для винтового перемещения
при h > 0. Если же h = 0 , и речь идет о повороте в пространстве, надо учитывать, что
=
. В частности,
=
(отражение относительно прямой параллельной v и проходящей через О). Аналогично,
=
. Если при этом j=p это преобразование не зависит от вектора n и является отражением относительно точки О.
4
*
Композиции
1
.
Теорема 4
Если f и g два перемещения X, а f*, g* - соответствующие операторы в V, то (f·g)* = f*g*(Символом · обозначена композиция перемещений).
Доказательство.
Используем координатную форму записи: f( R) = AR + v, g( R) = BR + w. Тогда: (f·g)( R) = f( (g( R)) = f( BR + w) = A( BR +w) +v = ( AB)R + ( Aw + v). Следовательно, (f·g)* = AB = f*g*.
Следствие.
Композиция двух перемещений с определителями одного знака имеет определитель (+1); если знаки определителей противоположны, композиция имеет определитель (-1).
Вычисление композиции перемещений пространства
не вызывает затруднений. Отметим только, что
·
=
,где v =2AB.
Для случая пространства
удобно использовать комплексные числа. Отождествляя их с точками плоскости, получаем удобный способ записи перемещений. Например, поворот
можно записать в виде: z ®
z + c. Точка О является неподвижной и соответствующее комплексное число
находится из уравнения
= ![](ref-1_745671053-219.coolpic)
+ с, откуда
= с/(1-
). Таким образом,
Отметим, что
=
при j+y¹0 (mod 2p) . В то же время при j+y = 0 указанная композиция будет переносом на вектор AD, где D =
.
Преобразование z®
+c является скользящим отражением относительно прямой Im(
= 0 на вектор 0,5 (с +
). Если прямая l проходит через точку
и ее направляющий вектор (рассматриваемый как комплексное число) имеет аргумент
, то перемещение
можно записать в виде ![](ref-1_745675275-421.coolpic)
Композиция двух скользящих отражений относительно пересекающихся прямых будет поворотом. В то же время, если прямые параллельны, композиция - перенос.
Замечание. ( о параметрах перемещений)
Параметр
4
*
Композиции
1
.
Теорема 4
Если f и g два перемещения X, а f*, g* - соответствующие операторы в V, то (f·g)* = f*g*(Символом · обозначена композиция перемещений).
Доказательство.
Используем координатную форму записи: f( R) = AR + v, g( R) = BR + w. Тогда: (f·g)( R) = f( (g( R)) = f( BR + w) = A( BR +w) +v = ( AB)R + ( Aw + v). Следовательно, (f·g)* = AB = f*g*.
Следствие.
Композиция двух перемещений с определителями одного знака имеет определитель (+1); если знаки определителей противоположны, композиция имеет определитель (-1).
Вычисление композиции перемещений пространства
Для случая пространства
Преобразование z®
Композиция двух скользящих отражений относительно пересекающихся прямых будет поворотом. В то же время, если прямые параллельны, композиция - перенос.