Реферат Определение оптимальных размеров датчика СВЧ поверхностных волн на основе меандровой линии замед
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Определение оптимальных размеров датчика СВЧ поверхностных волн (П.В.) на основе меандровой линии замедления (Л.З.)
Датчик ПВ сигнала на основе меандровой ЛЗ (плоская линейная спираль)
характеризуется следующими размерами (рис. 1):
рис. 1. Меандровая линия замедления
h - ширина,
L - длина,
2D - период,
D - ячейка ( шаг ) системы ,
Составляющие полей получены в [1] при использовании следующих приближений
1) вдоль проводников распространяется ТЕМ волна;
2) проводимость проводников и экранов бесконечна;
3)
4) система неограниченна в направлении z и проводники имеют
квадратное сечение.
Полагая, дополнительно, что система погружена в непроводящий диэлектрик с проницаемостью
I область
II область
III область
где
пространственной гармоники с набегом фазы на ячейку
соответственно, коэффициенты
В датчиках ПВ можно использовать как составляющую поля
( выраженного через групповую скорость и энергию запасенную в ячейке):
аналогичны
Из (5) следует, что амплитуда магнитного поля определяется суммой двух функций
Сигнал датчика ПВ пропорционален среднеквадратичному значению напряженности магнитного поля в образце, который можно выразить через коэффициент преобразования мощности в поле (6)
Рис. 2. Зависимость коэффициента преобразования мощности в поле для объемного образца от параметра kh/2 .Кривые 1,2 и 3 соответствуют толщинам образца t = 0, D/4 и D/2 .Здесь
Зависимость
1) экраны удалены;
2) система симметрична, т.е.
Поскольку про
Для определения оптимальных геометрических размеров датчика найдем его чувствительность в зависимости от параметров спирали и толщины образца. Полагая детектирование линейным и что спираль и детектор идеально согласованны с СВЧ трактом образец находится с одной стороны спирали и равен ее длине и ширине и мощность СВЧ , поглощаемая в момент резонанса , мала в сравнении с подводимой .приходим к выражению :
Рис.3. Зависимость чувствительности датчика от параметров меандровой ЛЗ (kh/2) и отношения толщины образца t к шагу спирали D.
Где
Определенная таким образом величина t может в
Оптимальная длина спирали при наличии потерь, равна
КОНСТРУКЦИЯ ДАТЧИКА ПВ И ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ.
На рис.4 приведена конструкция датчика, изготовленная следующим образом. На заготовку из оркстекла (
Изготовленные меандровые ЛЗ имели размеры L=10 мм,
и 6,2 дб/см (h = 6 мм, D = 0,4 мм).
Полоса пропускания, определенная по частотной характеристике датчика ПВ, превышает 1500 МГц для датчиков с
Измеренная зависимость сигнала датчика ЭПР (рис.5) от объема образца и высоты его расположения над поверхностью спирали (образец толщиной 0,07 мм) показывает, что для датчика с h = 4,5 мм и h = 6 мм и шагом D = 0,6 мм предельный объем образца равен 7 мм3 и 17 мм3 соответственно (при одностороннем расположении образца), а амплитуда сигнала датчика ПВ уменьшается в "е" раз на высоте ~0,1 мм и ~0,17 мм для меандровых линий с h = 4,5 мм и h = 6 мм соответственно. Большая скорость спадания поля с высотой для меандровой ЛЗ с меньшей шириной, по-видимому, является следствием двухступенчатой структуры "меандра". Это подтверждается тем, что экспериментальные зависимости достаточно хорошо совпадают с вычисленными по данным рис.3, который был построен с учетом двуволного характера системы. Масштаб экспериментальных кривых и расчетных точек на рис.4 выбран так, чтобы найденные и рассчитанные значения для ЛЗ с h= 4,5 мм совпадали при Vo=21 мм3 для ЛЗ с h = б мм при t/D = 0,5.
Измеренная чувствительность датчиков (при направлении постоянного магнитного поля
На датчике с меандров ой ЛЗ были проведены предварительные измерения на дефектоскопе диапазона (площадь образца при двухстороннем расположении составляла ~ 90 мм2 при толщине 0,05 мм) и показана возможность его использования в диапазоне волн меньше 1 см. Это открывает перспективы использования этого датчика для структуроскопических работ в 8 мм диапазоне, т.к. система является полностью открытой.
Интересной особенностью датчика на основе меандровой ЛЗ является изменение интенсивности сигнала ПВ (примерно в 9 раз на изготовленных датчиках) при изменении направления постоянного магнитного поля
Из полученных данных следует, что меандровые ЛЗ могут служить датчиками сигнала ПВ для плоских образцов толщиной ~ 0,1 - 0,2 мм в 3 см диапазоне волн, объемов ~ 30 мм3 и площади ~ 300 мм2 ( в отсутствии диэлектрика ). Для сравнения укажем, что в случае объемного резонатора Vo ~ 500 мм3 и So ~ 300 мм2. При этом, однако, следует отметить важные преимущества датчиков плоской конструкции:
1) плоские ЛЗ являются полностью открытыми;
2) в противоположность объемным резонаторам , когда образец помещается внутрь датчика , в случае плоских ЛЗ можно помещать датчик на образец;
3) использовать датчики в качестве объемного зонда;
4) упростить термостатирование образца в широком диапазоне температур (от высоких до сверхнизких) при одновременном облучении образца;
5) исследовать не только ровные плоские поверхности, но и поверхности с гладкой кривизной;
6) использовать интегральные СВЧ схемы, что особенно перспективно при низкотемпературных измерениях и при создании малогабаритных структуроскопов на основе интегральных схем.
Существенным недостатком датчиков на основе ЛЗ, по сравнению с объемными резонаторам, является наличие электрического поля в объеме образца. Однако, их использование, наряду с объемными резонаторами, позволяет значительно расширить экспериментальные возможности структуроскопии.
Литература
1. Г.Л. Соболев, А.А. Хоркина, Вопросы электроники сверхвысоких частот,
1969, 6, 152. Изд. Саратовского ун-та.
2. Р.А. Силин, В.П. Сазонов, Замедляющие системы, Изд. “Сов. радио”, 1960.