Реферат Эффект Ганна и его использование, в диодах, работающих в генераторном режиме
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Министерство образования Российской Федерации
Орловский Государственный Технический Университет
Кафедра физики
РЕФЕРАТ
на тему: «Эффект Ганна и его использование, в диодах, работающих в генераторном режиме».
Дисциплина: «Физические основы микроэлектроники»
Выполнил студент группы 3–4
Сенаторов Д.Г.
Руководитель:
Оценка:
Орел. 2000
Эффект Ганна и его использование, в диодах, работающих в генераторном режиме.
Для усиления и генерации колебаний СВЧ-диапазона может быть использована аномальная зависимость скорости электронов от напряженности электрического поля в некоторых полупроводниковых соединениях, прежде всего в арсениде галлия. При этом основную роль играют процессы, происходящие в объеме полупроводника, а не в p
-
n-переходе. Генерацию СВЧ-колебаний в однородных образцах GaAs n-типа при напряженности постоянного электрического поля выше порогового значения впервые наблюдал Дж. Ганн в 1963 г. (поэтому такие приборы называют диодами Ганна). В отечественной литературе их называют также приборами с объемной неустойчивостью или с междолинным переносом электронов, поскольку активные свойства диодов обусловлены переходом электронов из «центральной» энергетической долины в «боковую», где они характеризуются большой эффективной массой и малой подвижностью. В иностранной литературе последнему названию соответствует термин ТЭД (Transferred
Electron
Device).
В слабом поле подвижность
Можно было бы ожидать, что наличие падающего участка характеристики
где
Рис.1. Аппроксимированная зависимость дрейфовой скорости электронов от напряженности электрического поля для GaAs.
Рис.2. К пояснению процесса формирования слоя накопления в однородно легированном GaAs.
Под катодом понимается контакт к образцу, на который подан отрицательный потенциал. Возникающие при этом внутренние электрические поля
Однако такое распределение электрического поля неустойчиво и при наличии в образце неоднородности в виде скачков концентрации, подвижности или температуры может преобразоваться в так называемый домен сильного поля. Напряженность электрического поля связана с концентрацией электронов уравнением Пуассона, которое для одномерного случая имеет вид
Повышение электрического поля в части образца будет сопровождаться появлением на границах этого участка объемного заряда, отрицательного со стороны катода и положительного со стороны анода (рис.3, а). При этом скорость электронов внутри участка падает в соответствии с рис.1. Электроны со стороны катода будут догонять электроны внутри этого участка, за счет чего увеличивается отрицательный заряд и образуется обогащенный электронами слой. Электроны со стороны анода будут уходить вперед, за счет чего увеличивается положительный заряд и образуется обедненный слой, в котором
Рис.3. К пояснению процесса формирования дипольного домена.
После того как домен исчезнет на аноде, напряженность поля в образце повышается, а когда она достигнет значения
Такой режим работы диода Ганна называют пролетным режимом. В пролетном режиме ток через диод представляет собой импульсы, следующие с периодом
Электронные процессы в диоде Ганна должны рассматриваться с учетом уравнений Пуассона, непрерывности и полной плотности тока, имеющих для одномерного случая следующий вид:
Рис.4. Эквивалентная схема генератора на диоде Ганна (а) и временные зависимости напряжения (б) и тока через диод Ганна в пролетном режиме (в) и в режимах с задержкой (г) и гашением домена (д).
Мгновенное напряжение на диоде
В зависимости от параметров диода (степени и профиля легирования материала, длины и площади сечения образца и его температуры), а также от напряжения питания и свойств нагрузки диод Ганна, как генератор и усилитель СВЧ-диапазона, может работать в различных режимах: доменных, ограничения накопления объемного заряда (ОНОЗ, в иностранной литературе LSA–Limited Space Charge Accumulation), гибридном, бегущих волн объемного заряда, отрицательной проводимости.
Доменные режимы работы.
Для доменных режимов работы диода Ганна характерно наличие в образце сформировавшегося дипольного домена в течение значительной части периода колебаний. Характеристики стационарного дипольного домена подробно рассмотрены в [?], где показано, что из (1), (3) и (4) следует, что скорость домена
В соответствии с (5) площади, заштрихованные на рис.5, а и ограниченные линиями
Рис.5. К определению параметров дипольного домена.
На рис.5, б приведена зависимость напряжения домена
Таким образом, напряжение исчезновения домена оказывается меньше порогового напряжения формирования домена. Как видно из рис.5, вследствие резкой зависимости избыточного напряжения на домене от напряженности поля вне домена поле вне домена и скорость домена мало изменяются при изменении напряжения на диоде. Избыточное напряжение поглощается в основном в домене. Уже при
Длина домена зависит от концентрации донорной примеси, а также от напряжения на диоде и при
Рис6. Диод Ганна.
Приближенно считают, что Домен успеет полностью сформироваться за время:
где
Значение произведения концентрации электронов на длину образца
Время формирования домена не должно превышать полупериода СВЧ-колебаний. Поэтому имеется и второе условие существования движущегося домена
В зависимости от соотношения времени пролета и периода СВЧ-колебаний, а также от значений постоянного напряжения
При малом сопротивлении нагрузки, когда
При работе диода на контур с высоким сопротивлением, когда
При еще большей амплитуде высокочастотного напряжения, соответствующей кривой
3 на рис.4,б, минимальное напряжение на диоде может оказаться меньше напряжения гашения диода
.В этом случае имеет место режим с гашением домена (см. рис.4, д). Домен образуется в момент времени
и рассасывается в момент времени
, когда
.Новый домен начинает формироваться после того, как напряжение превысит пороговое значение. Поскольку исчезновение домена не связано с достижением им анода, время пролета электронов между катодом и анодом в режиме гашения домена может превышать период колебаний:
. Таким образом, в режиме гашения
. Верхний предел генерируемых частот ограничен условием
и может составлять
.
Электронный к.п.д. генераторов на диодах Ганна, работающих в доменных режимах, можно определить, раскладывая в ряд Фурье функцию тока
(см. рис.4) для нахождения амплитуды первой гармоники и постоянной составляющей тока. Значение к.п.д. зависит от отношений
,
,
,
и при оптимальном значении
не превышает для диодов из GaAs 6% в режиме с задержкой домена. Электронный к.п.д. в режиме с гашением домена меньше, чем в режиме с задержкой домена.
Режим ОНОЗ.
Несколько позднее доменных режимов был предложен и осуществлен для диодов Ганна режим ограничения накопления объемного заряда. Он существует при постоянных напряжениях на диоде, в несколько раз превышающих пороговое значение, и больших амплитудах напряжения на частотах, в несколько раз больших пролетной частоты. Для реализации режима ОНОЗ требуются диоды с очень однородным профилем легирования. Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде. Если промежуток времени, в течение которого напряженность электрического поля проходит область ОДП характеристики
, много меньше времени формирования домена
, то не происходит заметного перераспределения поля и объемного заряда по длине диода. Скорость электронов во всем образце «следует» за изменением электрического поля, а ток через диод определяется зависимостью скорости от поля (рис.7).
Таким образом, в режиме ОНОЗ для преобразования энергии источника питания в энергию СВЧ-колебаний используется отрицательная проводимость диода. В этом режиме в течение части периода колебаний длительностью
напряжение на диоде остается меньше порогового и образец находится в состоянии, характеризуемом положительной подвижностью электронов, т. е. происходит рассасывание объемного заряда, который успел образоваться за время, когда электрическое поле в диоде было выше порогового.
Условие слабого нарастания заряда за время
приближенно запишем в виде
, где
;
–среднее значение отрицательной дифференциальной подвижности электронов в области
. Рассасывание объемного заряда за время
, будет эффективным, если
и
, где
;
и
–постоянная времени диэлектрической релаксации и подвижность электронов в слабом поле.
Считая
,
, имеем
. Это неравенство определяет интервал значений
, в пределах которого реализуется режимОНОЗ.
Электронный к. п. д. генератора на диоде Ганна в режиме ОНОЗ можно рассчитать по форме тока (рис.7). При
максимальный к. п. д. составляет 17%.

Рис.7. Временная зависимость тока на диоде Ганна в режиме ОНОЗ.
В доменных режимах частота генерируемых колебаний примерно равна пролетной частоте. Поэтому длина диодов Ганна, работающих в доменных режимах, связана с рабочим диапазоном частот выражением
, (8)
где
выражена в ГГц, а
–в мкм. В режиме ОНОЗ длина диода не зависит от рабочей частоты и может во много раз превышать длину диодов, работающих на тех же частотах в доменных режимах. Это позволяет значительно увеличивать мощность генераторов в режиме ОНОЗ по сравнению с генераторами, работающими в доменных режимах.
Рассмотренные процессы в диоде Ганна в доменных режимах являются, по существу, идеализированными, так как реализуются на сравнительно низких частотах (1–3 ГГц), где период колебаний значительно меньше времени формирования домена, а длина диода много больше длины домена при обычных уровнях легирования
. Чаще всего диоды Ганна в непрерывном режиме используют на более высоких частотах в так называемых гибридных режимах. Гибридные режимы работы диодов Ганна являются промежуточными между режимами ОНОЗ и доменным. Для гибридных режимов характерно, что образование домена занимает большую часть периода колебаний. Не полностью сформировавшийся домен рассасывается, когда мгновенное напряжение на диоде снижается до значений, меньших порогового. Напряженность электрического поля вне области нарастающего объемного заряда остается в основном больше порогового. Процессы, происходящие в диоде в гибридном режиме, анализируют с применением ЭВМ при использовании уравнений (1), (3) и (4). Гибридные режимы занимают широкую область значений
и не столь чувствительны к параметрам схемы, как режим ОНОЗ.
РежимОНОЗ и гибридные режимы работы диода Ганна относят к режимам с «жестким» самовозбуждением, для которых характерна зависимость отрицательной электронной проводимости от амплитуды высокочастотного напряжения. Ввод генератора в гибридный режим (как и в режимОНОЗ) представляет сложную задачу и обычно осуществляется последовательным переходом диода из пролетного режима в гибридные.
Электронный к.п.д. генераторов на диодах Ганна, работающих в доменных режимах, можно определить, раскладывая в ряд Фурье функцию тока
Режим ОНОЗ.
Несколько позднее доменных режимов был предложен и осуществлен для диодов Ганна режим ограничения накопления объемного заряда. Он существует при постоянных напряжениях на диоде, в несколько раз превышающих пороговое значение, и больших амплитудах напряжения на частотах, в несколько раз больших пролетной частоты. Для реализации режима ОНОЗ требуются диоды с очень однородным профилем легирования. Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде. Если промежуток времени, в течение которого напряженность электрического поля проходит область ОДП характеристики
Таким образом, в режиме ОНОЗ для преобразования энергии источника питания в энергию СВЧ-колебаний используется отрицательная проводимость диода. В этом режиме в течение части периода колебаний длительностью
Условие слабого нарастания заряда за время
Считая
Электронный к. п. д. генератора на диоде Ганна в режиме ОНОЗ можно рассчитать по форме тока (рис.7). При
Рис.7. Временная зависимость тока на диоде Ганна в режиме ОНОЗ.
В доменных режимах частота генерируемых колебаний примерно равна пролетной частоте. Поэтому длина диодов Ганна, работающих в доменных режимах, связана с рабочим диапазоном частот выражением
где
Рассмотренные процессы в диоде Ганна в доменных режимах являются, по существу, идеализированными, так как реализуются на сравнительно низких частотах (1–3 ГГц), где период колебаний значительно меньше времени формирования домена, а длина диода много больше длины домена при обычных уровнях легирования
РежимОНОЗ и гибридные режимы работы диода Ганна относят к режимам с «жестким» самовозбуждением, для которых характерна зависимость отрицательной электронной проводимости от амплитуды высокочастотного напряжения. Ввод генератора в гибридный режим (как и в режимОНОЗ) представляет сложную задачу и обычно осуществляется последовательным переходом диода из пролетного режима в гибридные.
Рис.8. Электронный к. п. д. генераторов на диоде Ганна из GaAs для различных режимов работы:
1–с задержкой формирования домена
2–с гашением домена
Рис.9. Временная зависимость напряжения (а) и тока (б) диода Ганна в режиме повышенного к. п. д.
3–гибридный
4–ОНОЗ
Конструкции и параметры генераторов на диодах Ганна.
На рис.8 приведены значения максимального электронного к.п.д. диода Ганна из GaAs в различных режимах работы. Видно, что значения
Следует иметь в виду, что электронный к.п.д. генераторов на диодах Ганна уменьшается на высоких частотах, когда период колебаний становится соизмеримым с временем установления ОДП (это проявляется уже на частотах ~30 ГГц). Инерционность процессов, определяющих зависимость средней дрейфовой скорости электронов от поля, приводит к уменьшению противофазной составляющей тока диода. Предельные частоты диодов Ганна, связанные с этим явлением, оцениваются значениями ~100 ГГц для приборов из GaAs и 150–300 ГГц для приборов из InP.
Выходная мощность диодов Ганна ограничена электрическими и тепловыми процессами. Влияние последних приводит к зависимости максимальной мощности от частоты в виде
В доменных режимах
где
Максимальная напряженность электрического поля в домене
Как и для ЛПД, на относительно низких частотах (в сантиметровом диапазоне длин волн) максимальное значение выходной мощности диодов Ганна определяется тепловыми эффектами. В миллиметровом диапазоне толщина активной области диодов, работающих в доменных режимах, становится малой и преобладают ограничения электрического характера. В непрерывном режиме в трехсантиметровом диапазоне от одного диода можно получить мощность 1–2 Вт при к. п. д. до 14%; на частотах 60–100 ГГц – до 100 вВт при к. п. д. в единицы процентов. Генераторы на диодах Ганна характеризуются значительно меньшими частотными шумами, чем генераторы на ЛПД.
Режим ОНОЗ отличается значительно более равномерным распределением электрического поля. Кроме того, длина диода, работающего в этом режиме, может быть значительной. Поэтому амплитуда СВЧ-напряжения на диоде в режиме ОНОЗ может на 1–2 порядка превышать напряжение в доменных режимах. Таким образом, выходная мощность диодов Ганна в режиме ОНОЗ может быть повышена на несколько порядков по сравнению с доменными режимами. Для режима ОНОЗ на первый план выступают тепловые ограничения. Диоды Ганна в режиме ОНОЗ работают чаще всего в импульсном режиме с большой скважностью и генерируют в сантиметровом диапазоне длин волн мощность до единиц киловатт.
Частота генераторов на диодах Ганна определяется в основном резонансной частотой колебательной системы с учетом емкостной проводимости диода и может перестраиваться в широких пределах механическими и электрическими методами.
В волноводном генераторе (рис.10, а) диод Ганна 1 установлен между широкими стенками прямоугольного волновода в конце металлического стержня. Напряжение смещения подается через дроссельный ввод 2, который выполнен в виде отрезков четвертьволновых коаксиальных линий и служит для предотвращения проникновения СВЧ-колебаний в цепь источника питания. Низкодобротный резонатор образован элементами крепления диода в волноводе. Частота генератора перестраивается с помощью варакторного диода 3, расположенного на полуволновом расстоянии
Рис.10. Устройство генераторов на диодах Ганна:
а–волноводного; б–микрополоскового; в–с перестройкой частоты ЖИГ-сферой
В микрополосковой конструкции (рис.10, б) диод 1 включен между основанием и полосковым проводником. Для стабилизации частоты используется высокодобротный диэлектрический резонатор 4 в виде диска из диэлектрика с малыми потерями и высоким значением
Перестраиваемые по частоте генераторы на диодах Ганна могут быть сконструированы с применением монокристаллов железоиттриевого граната (рис.10, в). Частота генератора в этом случае изменяется за счет перестройки резонансной частоты высокодобротного резонатора, имеющего вид ЖИГ–сферы малого диаметра, при изменении магнитного поля
Следует отметить, что расчет генераторов на диодах Ганна затруднен приблизительным характером данных как о параметрах эквивалентной схемы диода, так и о параметрах эквивалентной схемы колебательной системы, а также узла крепления диода (особенно на высоких частотах). Обобщенную эквивалентную схему диода Ганна обычно задают в виде, показанном на рис.11. Активную область диода представляют в виде параллельного соединения отрицательной проводимости (
Рис.11. Обобщенная эквивалентная схема диода Ганна.
Усилители на диодах Ганна.
Большой интерес представляют разработки усилителей на диодах Ганна, особенно для миллиметрового диапазона длин волн, где применение СВЧ-транзисторов ограничено. Важной задачей при создании усилителей на диодах Ганна является обеспечение устойчивости их работы (стабилизация диода) и прежде всего подавление малосигнальных колебаний доменного типа. Это может быть достигнуто ограничением параметра
В субкритически легированных диодах при
Устойчивая отрицательная проводимость в широком диапазоне частот, достигающем 40%, реализуется в диодах с
Однородное распределение электрического поля по длине диода и устойчивое усиление в широкой полосе частот могут быть получены за счет неоднородного легирования образца (рис.12, а). Если вблизи катода имеется узкий слаболегированный слой длиной около 1 мкм, то он ограничивает инжекцию электронов из катода и приводит к резкому возрастанию электрического поля. Увеличение концентрации примеси по длине образца по направлению к аноду в пределах от
Рис.12. Профиль легирования (а) и распределение поля (б) в диоде Ганна с высокоомной прикатодной областью.
Рассмотренные типы усилителей характеризуются широким динамическим диапазоном, к.п.д., равным 2–3%, и коэффициентом шума ~10дБ в сантиметровом диапазоне длин волн.
Ведутся разработки тонкопленочных усилителей бегущей волны (рис.13), которые обеспечивают однонаправленное усиление в широкой полосе частот и не требуют применения развязывающих циркуляторов. Усилитель представляет собой эпитаксиальный слой GaAs 2 толщиной
Рис.13. Схема устройства тонкопленочного усилителя бегущей волны на GaAs с продольным дрейфом
Для работы усилителя требуется обеспечить однородность пленки и однородность электрического поля по длине прибора. Напряжение смещенияУБВ лежит в области ОДП GaAs, т. е. при
Применение основных уравнений движения электронов для одномерного случая (1), (3), (4) и режима малого сигнала, когда постоянные составляющие конвекционного тока, напряженности электрического поля и плотности заряда много больше амплитуды переменных составляющих (
Одна из них является прямой волной, распространяющейся вдоль пленки от катода к аноду с фазовой скоростью
где
Оценка по (10) при
[Л]. Березин и др. Электронные приборы СВЧ. – М. Высшая школа 1985.