Реферат

Реферат Гармонические колебания

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025



Гармонические колебания

Колебаниями называются движения или процессы, которые характеризуются определённой повторяемостью во времени. Колебания бывают:

Вынужденные

Гармонические

Затухающие

Периодические

Внешняя сила, обеспечивающая незатухающие колебания системы, называется вынужденной, а колебания системы – вынужденными.

Гармоническим называют колебание, при котором изменение колеблющейся величины со временем происходит по закону синуса (или косинуса, если точка М (материальная точка) проецируется на горизонтальный диаметр).

Колебательное движение реальной механической системы всегда сопровождается трением, на преодоление которого расходуется часть энергии колебательной системы. Поэтому  энергия колебания в процессе колебания уменьшается, переходя в теплоту. Т.к. энергия колебания пропорциональна квадрату амплитуды, то постепенно уменьшается и амплитуда колебаний (см. Рисунок: х - смещение, t – время). Когда вся энергия колебания перейдёт в теплоту, колебание прекратится. Такого рода колебания называются затухающими.

Периодическим называется колебание, при котором, система отклоняется от своего состояния равновесия, и каждый раз возвращается к нему через одинаковые промежутки времени.

Колебательные процессы широко распространены в природе и технике: вибрация натянутой струны, движение поршня дизеля и ножей косилки, суточные и годичные изменения температуры воздуха, морские приливы и отливы, волнение водной поверхности, биение сердца, дыхание, тепловое движение ионов кристаллической решётки твёрдого тела, переменный ток и его электромагнитное поле, движение электронов в атоме, и, конечно, движение часового маятника. Рассмотрим колебания математического маятника:

Математическим маятником называется материальная точка, колеблющаяся на невесомой и недеформируемой нити.

Момент инерции математического маятника равен:

J = ml2 ,

Где m – масса материальной точки, l – длина нити.

Подставляя это выражение в выражение периода колебание маятника (T = 2 / = 2 J/(mgl)), получим окончательную формулу периода колебаний математического маятника:

T = 2 l/g.

Отсюда следует, что при малых отклонениях период колебания математического маятника пропорционален квадратному корню из длины маятника, обратно пропорционален квадратному корню из ускорения свободного падения и не зависит от амплитуды колебаний и массы маятника.

Колебательные явления могут возникать помимо нашего желания и играть вредную роль: часто наблюдаются нежелательные и опасные колебания сооружений, вибрации механизмов и т.д.

Список литературы

Р.И. ГРАБОВСКИЙ  (Курс Физики)

О.Ю. ШМИДТ, Ф.Н. ПЕТРОВ (Большая Советская Энциклопедия)

Для подготовки данной работы были использованы материалы с сайта http://www.referat.ru



1. Реферат История Совинформбюро
2. Реферат на тему Нормальна поведінка та саногенне мислення
3. Реферат Программа государственного экзамена по математике для студентов математического факультета Моско
4. Реферат на тему Боевые щиты
5. Доклад на тему Себорея
6. Реферат Учет в бюджетных организациях 3
7. Контрольная работа на тему Виды и значения маркировки грузов
8. Диплом Анализ финансового состояния ОАО Нефтекамский хлебокомбинат
9. Курсовая на тему Методика вивчення прикметника в початковій школі
10. Курсовая на тему Трудовые ресурсы и производительность труда сельскохозяйственных п