Реферат Пределы последовательностей и функций
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Пределы последовательностей и функций
Контрольная работа по высшей математике
1. Пределы последовательностей и функций
Числовой последовательностью
В основе всех положений математического анализа лежит понятие предела числовой последовательности. Число А называется пределом числовой последовательности
Если последовательность
Пусть функция
Число А называется пределом функции
Возможно иное определение предела функции в точке: число А называется пределом функции при
Таким образом, первое определение предела функции основано на понятии предела числовой последовательности, и его называют определением на «языке последовательностей». Второе определение носит название «на языке
Кроме понятия предела функции в точке, существует также понятие предела функции при стремлении аргумента к бесконечности: число А называется пределом функции
Теоремы о пределах функций являются базой для общих правил нахождения пределов функций. Можно показать, что арифметические операции над функциями, имеющими предел в точке
Примеры
Найти предел функции
Решение: Имеем неопределенность вида
2. Производная и дифференциал
Пусть функция
Производной функции
Например, выражение
Определение производной можно записать в виде формулы
Предел (4.1) может не существовать. В этом случае говорят, что функция
В различных задачах (в том числе и экономических) производная функции
Нахождение производной функции называется дифференцированием этой функции. Если функция в точке х имеет конечную производную, то функция называется дифференцируемой в этой точке.
Укажем правила дифференцирования, которые сводят вычисление производных одних функций к вычислению производных других (более простых) функций.
Если функции
Если функция
Если функция
Пример.
Найти производную функции
Решение:
3 Геометрические изложения и дифференцированные исчисления (построение графиков)
Функция
если
Из данного определения вытекает, что для возрастающей функции приращения аргумента и функции имеет один и тот же знак, в силу чего их отношение положительно:
Точка
min
f(х0) f(х0)
О х0–d х0 х0+d х О х0–d х0 х0+d х
точка максимума | точка минимума |
Рис. 1
Из определений точек экстремума следует, что вне d-окрестности точки экстремума поведение функции произвольно, т. е. понятия максимума и минимума функции носят характер локальных (местных), а не абсолютных понятий.
Чтобы установить признаки возрастания и убывания и признаки экстремума функций, рассмотрим ряд важных теорем математического анализа, на которые опираются все дальнейшие исследования функций.
Рекомендуется исследование функций проводить в определенной последовательности.
1. Найти область определения функции; точки разрыва и их характер; вертикальные асимптоты графика.
2. Определить возможный тип симметрии функции (четность, нечетность функции); точки пересечения графика функции с осями координат, т. е. решить уравнения
3. Найти наклонные и горизонтальные асимптоты графика функции.
4. Использовать первую производную для определения области возрастания и убывания и экстремумов функции.
5. Использовать вторую производную для определения участков выпуклости и вогнутости графика и точек перегиба.
6. Построить график функции с учетом проведенного исследования.
Пример. Провести полное исследование функции
Решение:
Проведем полное исследование функции, используя следующую схему:
найти область определения функции;
исследовать на четность и нечетность функцию;
найти точки разрыва функции;
найти асимптоты (вертикальные, наклонные и горизонтальные) графика функции;
найти точки пересечения графика функции с координатными осями;
исследовать функцию на монотонность (указав интервалы возрастания и убывания) и экстремум;
определить интервалы выпуклости и вогнутости графика функции, точки перегиба;
при необходимости вычислить значения функции в дополнительных точках;
построить схематично график функции, используя результаты полученные в пунктах 1-8.
Областью определения функции является множество
Так как
Функция претерпевает разрыв в точке
Найдем асимптоты графиков функции:
а). Прямая
б). Находим наклонные и горизонтальные асимптоты (горизонтальные асимптоты являются частным случаем наклонных асимптот)
где
Таким образом, прямая
Найдем точки пересечения графика функции с осями координат.
а) С осью
б) С осью
6. Исследуем функцию на возрастание, убывание и экстремум. Для этого найдем производную функции.
Из
+ _ +
______________________________________ x
-3 11
Так как на интервалах
Так как при переходе через точки
7. Исследуем график функции на выпуклость, вогнутость и определим точки перегиба. Для этого найдем вторую производную функции.
Очевидно, что в интервале
Несмотря на то, что при переходе через точку
Из
+ _ +
______________________________________ x
-3 11
Так как на интервалах
Так как при переходе через точки
4. Неопределенный интеграл
Часто возникает задача, обратная той, которая решалась в дифференциальном исчислении, а именно: дана функция
Функция
Например, пусть
В основе интегрального исчисления лежит теорема об общем виде первообразной: если
Выражение вида
Пусть наряду с данной первообразной
откуда
Действие нахождения первообразной называется интегрированием функции.
Доказанная теорема позволяет ввести основное понятие интегрального исчисления: если
Геометрически неопределенный интеграл представляет собой семейство плоских кривых
Для того, чтобы проверить, правильно ли выполнено интегрирование, надо взять производную от результата и убедиться, что получена подынтегральная функция
Приведем основные свойства неопределенного интеграла:
1. производная неопределенного интеграла равна подынтегральной функции
2. неопределенный интеграл от алгебраической суммы функций равен сумме интегралов от слагаемых функций
3. постоянный множитель можно выносить за знак неопределенного интеграла
Значения интегралов от основных элементарных функций получаются из формул дифференцирования этих функций. Приведем таблицу основных интегралов:
1) | 7) |
2) | 8) |
3) | 9) |
4) | 10) |
5) | 11) |
6) | 12) |
Интегралы, содержащиеся в этой таблице, называются табличными.
Пример. Найти неопределенный интеграл. Результат интегрирования проверить дифференцированием
Решение: Для нахождения неопределенных интегралов можно воспользоваться как методом замены переменной, так и методом внесения под знак дифференциала. Покажем оба метода.
1. Воспользуемся методом замены переменной. Введем новую переменную t по формуле
После замены переменной воспользовались свойством неопределенного интеграла: постоянный множитель
2. Решим этот пример методом внесения под знак дифференциала. Замечая, что
внесем под знак дифференциала
После внесения под знак дифференциала функции
3. Результат интегрирования проверим дифференцированием. Для этого найдем производную
Таким образом, производная от неопределенного интеграла равна подынтегральной функции, следовательно, интеграл от данной функции найден, верно.
5. Определенный интеграл
Определение определенного интеграла. Пусть функция
задана на отрезке [а, b]. Разобьем отрезок [а, b] на п произвольных частей точками
.
Точки, разделяющие отрезок [а, b] на частичные отрезки
длиной
, называются точками разбиения. Внутри каждого частичного отрезка выберем произвольную точку
. Образуем сумму произведений
,
называемую интегральной суммой для функции
на отрезке [а, b]. Геометрический смысл величины s показан на рис. 2.. Это сумма площадей прямоугольников с основаниями
и высотами
.
При этом числа a и b называются соответственно нижним и верхним пределами, выражение
– подынтегральным выражением,
– подынтегральной функцией.
Определенный интеграл численно равен площади криволинейной трапеции, ограниченной вертикальными прямыми
при
, осью Ох и графиком неотрицательной и непрерывной функции
. В этом состоит его геометрический смысл.
Если предположить, что
– производительность труда в момент t, то
будет численно равен объему произведенной продукции за промежуток
, т. е. определенному интегралу можно придать экономический смысл.
Определенный интеграл обладает рядом свойств, аналогичных свойствам неопределенного интеграла:
1) постоянный множитель можно выносить за знак интеграла;
2) интеграл от алгебраической суммы функций равен такой же сумме интегралов от этих функций (свойство линейности).
Кроме того, определенному интегралу присущи свойства, не имеющие аналогов в теории неопределенных интегралов:
3) интеграл от постоянной величины равен этой постоянной, умноженной на длину отрезка интегрирования
;
4) при перемене местами пределов интегрирования интеграл изменяет лишь знак
;
5) интеграл с одинаковыми пределами интегрирования равен нулю
;
6) для любых чисел а, b и c имеет место равенство
.
Пример. Вычислить определенный интеграл с точностью до двух знаков после запятой

Решение:
Воспользуемся методом замены переменной. Введем новую переменную t по формуле
. Тогда
или
. Осуществим пересчет пределов интегрирования, используя вид замены. Подставим нижний предел интегрирования старой переменной
в выражение
и найдем нижний предел интегрирования новой переменной
. Аналогично, подставляя верхний предел интегрирования старой переменной
, найдем верхний предел интегрирования новой переменной
. Тогда

6. Функции нескольких переменных, дифференцированных исчислений
До сих пор рассматривались функции
одной переменной х. В случае зависимости параметров какого-то процесса или явления от многих факторов вводится понятие функции нескольких переменных.
Пусть каждому набору значений n переменных величин
из множества M , называемых независимыми переменными, по какому-либо закону ставится в соответствие некоторое число z, называемое зависимой переменной. Тогда говорят, что задана функция нескольких переменных
.
Приведем примеры функций нескольких переменных.
1. Функция вида
, где
– постоянные числа, называется линейной или гиперплоскостью
-мерном пространстве.
2. Функция вида
, где
– постоянные числа, называется квадратичной формой от переменных
.
При рассмотрении функций в n-мерном пространстве широко используется геометрический язык, хотя буквальное понимание геометрических терминов возможно только при п = 2 и п = 3.
Далее для наглядности будем рассматривать функции двух переменных (
), хотя практически все понятия и теоремы, сформулированные для
, переносятся на случай
. Основные понятия математического анализа, введенные для функции одной переменной, переносятся на случай двух переменных. Так, число А называется пределом функции
в точке
, если для любого числа
можно найти число
такое, что для всех точек
из d-окрестности точки М выполняется неравенство
. Для обозначения предела функции в точке используется символика
.
Окрестностью точки
называется круг, содержащий точку М.
В случае функции двух переменных аргумент может стремиться к предельной точке по различным направлениям на плоскости, поэтому следует говорить о пределах функции в точке вдоль определенных линий.
Функция
называется непрерывной в точке
, если предел функции в этой точке существует и равен значению функции в этой точке, т. е.
. Геометрический смысл непрерывности функции при
очевиден: график функции
представляет собой в точке непрерывности
сплошную поверхность в некоторой окрестности этой точки.
Пример. Найти экстремум функции двух переменных z = x2 + y2, x Î [-20, 20], y Î [-10, 10].
Решение.
Необходимое условие экстремума
= 2х = 0,
= 2у = 0, откуда координаты стационарной точки (хст, уст) = (0, 0).
Вторые производные А =
= 2; В =
= 0; С =
= 2. Так как AC - B2 = 4 > 0, то в точке (0, 0) — локальный минимум.
Значение функции в точке минимума z (0, 0) = 0.
Список литературы
Выгодский М.Я. Справочник по высшей математике. - М.: Джангар, 2000. - 864 с.
Гордон В.А., Шмаркова Л.И. Краткий курс математики / Учебное пособие. – Орёл: ОрёлГТУ, 2000. – 96 с.
Демидович Б.П. Сборник задач и упражнений по математическому анализу: М.: Наука, 1972.
Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua
Определение определенного интеграла. Пусть функция
Точки, разделяющие отрезок [а, b] на частичные отрезки
называемую интегральной суммой для функции
При этом числа a и b называются соответственно нижним и верхним пределами, выражение
Определенный интеграл численно равен площади криволинейной трапеции, ограниченной вертикальными прямыми
Если предположить, что
у Мi mi А О х0=а хi Рис. 2 | Предел интегральной суммы |
Определенный интеграл обладает рядом свойств, аналогичных свойствам неопределенного интеграла:
1) постоянный множитель можно выносить за знак интеграла;
2) интеграл от алгебраической суммы функций равен такой же сумме интегралов от этих функций (свойство линейности).
Кроме того, определенному интегралу присущи свойства, не имеющие аналогов в теории неопределенных интегралов:
3) интеграл от постоянной величины равен этой постоянной, умноженной на длину отрезка интегрирования
4) при перемене местами пределов интегрирования интеграл изменяет лишь знак
5) интеграл с одинаковыми пределами интегрирования равен нулю
6) для любых чисел а, b и c имеет место равенство
Пример. Вычислить определенный интеграл с точностью до двух знаков после запятой
Решение:
Воспользуемся методом замены переменной. Введем новую переменную t по формуле
6. Функции нескольких переменных, дифференцированных исчислений
До сих пор рассматривались функции
Пусть каждому набору значений n переменных величин
z y O x M Рис. 3 | Функция одной переменной |
Приведем примеры функций нескольких переменных.
1. Функция вида
2. Функция вида
При рассмотрении функций в n-мерном пространстве широко используется геометрический язык, хотя буквальное понимание геометрических терминов возможно только при п = 2 и п = 3.
Далее для наглядности будем рассматривать функции двух переменных (
Окрестностью точки
В случае функции двух переменных аргумент может стремиться к предельной точке по различным направлениям на плоскости, поэтому следует говорить о пределах функции в точке вдоль определенных линий.
Функция
Пример. Найти экстремум функции двух переменных z = x2 + y2, x Î [-20, 20], y Î [-10, 10].
Решение.
Необходимое условие экстремума
Вторые производные А =
Значение функции в точке минимума z (0, 0) = 0.
Список литературы
Выгодский М.Я. Справочник по высшей математике. - М.: Джангар, 2000. - 864 с.
Гордон В.А., Шмаркова Л.И. Краткий курс математики / Учебное пособие. – Орёл: ОрёлГТУ, 2000. – 96 с.
Демидович Б.П. Сборник задач и упражнений по математическому анализу: М.: Наука, 1972.
Для подготовки данной работы были использованы материалы с сайта http://ref.com.ua