Реферат Типовой расчет графов
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Типовой расчет графов
Данная работа является типовым расчетом N2 по курсу "Дискретная математика" по теме "Графы", предлагаемая студентам МГТУ им. Баумана. (Вариант N 17).
Сразу хочу сказать для своих коллег: Граждане! Имейте терпение и совесть, поймите, что я это делаю для Вас с целью помочь разобраться в этой теме, а не просто свалить очередной предмет. Мне известно, как непросто сейчас с литературой, и с информацией вообще. Поиски неизвестно какой книги занимают много времени, поэтому в конце я привел небольшой список литературы, составленный мной из различных источников в дополнение к списку, написанному ранее в работе по графам (о постановке лаб. работ по алгоритму Прима и Дейкстра), которая, я надеюсь, есть в сети.
Содержание работы:
Типовой расчет состоит из 11-ти задач:
1, 2 и 3 задачи относятся к способам задания графов и опредению их характеристик, таких как диаметр, радиус и т.д.
4 и 5 задачи соответственно на алгоритм Прима и Дейкстра. Здесь я снова отсылаю Вас к более ранней работе (см. выше).
6-я задача о поиске максим ального потока в сети (метод Форда-Фалкерсона).
7-я задача - Эйлерова цепь (задача о почтальоне).
8-я задача - Гамильтонова цепь.
9-я задача - метод ветвей и границ применительно к задаче о коммивояжере.
10-я задача - задача о назначениях; венгерский алгоритм.
11-я задача - тоже методом ветвей и границ.
Gор(V,X)
Рис. 1
Задача1 Для неориентированного графа G, ассоциированного с графом Gор выписать (перенумеровав вершины) :
а) множество вершин V и множество ребер X, G(V,X);
б) списки смежности;
в) матрицу инцидентности;
г) матрицу весов.
д) Для графа Gор выписать матрицу смежности.
Нумерация вершин - см. Рис 1
а) V={0,1,2,3,4,5,6,7,8,9}
X={{0,1},{0,2},{0,3},{1,2},{1,4},{1,5},{1,6},{1,7},{2,3},{2,5},{3,8},{3,9},{4,5},{4,6},{5,3},{5,6},{5,8},{6,9},{7,8},{7,9},{8,9}}
В дальнейшем ребра будут обозначаться номерами в указанном порядке начиная с нуля.
б) Г0={1,2,3};
Г1={0,2,4,5,6,7};
Г2={0,1,3,5};
Г3={0,2,5,8,9};
Г4={1,5,6};
Г5={1,2,3,4,6,8};
Г6={1,4,5,9};
Г7={1,8,9};
Г8={1,3,5,7,9};
Г9={3,6,7,8};
в) Нумерация вершин и ребер соответственно п. а)
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
г) Показана верхняя половина матрицы, т.к. матрица весов неориентированного графа симметрична относительно главной диагонали.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | ¥ | 8 | 3 | 5 | ¥ | ¥ | ¥ | ¥ | ¥ | ¥ |
1 | | ¥ | 1 | ¥ | 2 | 2 | 4 | 5 | ¥ | ¥ |
2 | | | ¥ | 2 | ¥ | 5 | ¥ | ¥ | ¥ | ¥ |
3 | | | | ¥ | ¥ | 1 | ¥ | ¥ | 1 | 6 |
4 | | | | | ¥ | 4 | 2 | ¥ | ¥ | ¥ |
5 | | | | | | ¥ | 2 | ¥ | 1 | ¥ |
6 | | | | | | | ¥ | ¥ | ¥ | 2 |
7 | | | | | | | | ¥ | 1 | 1 |
8 | | | | | | | | | ¥ | 6 |
9 | | | | | | | | | | ¥ |
д) Матрица смежности для графа Gор.
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | ¥ | 1 | 1 | 1 | ¥ | ¥ | ¥ | ¥ | ¥ | ¥ |
1 | -1 | ¥ | 1 | ¥ | 1 | 1 | 1 | 1 | ¥ | ¥ |
2 | -1 | -1 | ¥ | 1 | ¥ | 1 | ¥ | ¥ | ¥ | ¥ |
3 | -1 | ¥ | -1 | ¥ | ¥ | -1 | ¥ | ¥ | 1 | 1 |
4 | ¥ | -1 | ¥ | ¥ | ¥ | 1 | 1 | ¥ | ¥ | ¥ |
5 | ¥ | -1 | -1 | 1 | -1 | ¥ | 1 | ¥ | 1 | ¥ |
6 | ¥ | -1 | ¥ | ¥ | -1 | -1 | ¥ | ¥ | ¥ | 1 |
7 | ¥ | -1 | ¥ | ¥ | ¥ | ¥ | ¥ | ¥ | 1 | 1 |
8 | ¥ | ¥ | ¥ | -1 | ¥ | -1 | ¥ | -1 | ¥ | 1 |
9 | ¥ | ¥ | ¥ | -1 | ¥ | ¥ | -1 | -1 | -1 | ¥ |
Задача 2 Найти диаметр D(G), радиус R(G), количество центров Z(G) для графа G ; указать вершины, являющиеся центрами графа G.
D(G)=2
R(G)=2
Z(G)=10
Все вершины графа G(V,X) являются центрами.
Задача 3 Перенумеровать вершины графа G, используя алгоритмы:
а) "поиска в глубину";
б) "поиска в ширину".
Исходная вершина - a.
а)
б)
Задача 4 Используя алгоритм Прима найти остов минимального веса графа G. выписать код укладки на плоскости найденного дерева, приняв за корневую вершину a.
Вес найденного дерева - 14.
Код укладки дерева: 000011000001111111.
Задача 5 Используя алгоритм Дейкстра найти дерво кратчайших путей из вершины a графа G.
Вес найденного пути - 8.
Задача 6 Используя алгоритм Форда - Фалкерсона, найти максимальный поток во взвешенной двуполюсной ориентированной сети {Gор , a , w}. Указать разрез минимального веса.
Последовательность насыщения сети (насыщенные ребра отмечены кружечками):
1-й шаг
2-й шаг
3-й шаг
4-й шаг
5-й шаг
6-й шаг
7-й шаг
Окончательно имеем:
Как видно из рисунка, ребра {6,9},{7,9},{3,9}, питающие вершину w, насыщенны, а оставшееся ребро {8,9}, питающееся от вершины 8, не может получить большее значение весовой функции, так как насыщенны все ребра, питающие вершину 8. Другими словами - если отбросить все насыщенные ребра, то вершина w недостижима, что является признаком максимального потока в сети.
Максимальный поток в сети равен 12.
Минимальный разрез сети по числу ребер: {{0,1},{0,2},{0,3}}. Его пропускная способность равна 16
Минимальный разрез сети по пропускной способности: {{6,9}, {7,9}, {3,9}, {3,8}, {5,8}, {7,8}}. Его пропускная способность равна 12.
Задача 7 (Задача о почтальоне) Выписать степенную последовательность вершин графа G.
а) Указать в графе G Эйлерову цепь. Если таковой цепи не существует, то в графе G добавить наименьшее число ребер таким образом, чтобы в новом графе можно было указать Эйлерову цепь.
б) Указать в графе G Эйлеров цикл. Если такого цикла не существует, то в графе G добавить наименьшее число ребер таким образом, чтобы в новом графе можно было указать Эйлеров цикл.
Степенная последовательность вершин графа G:
(3,6,4,5,3,6,4,3,4,4)
а) Для существования Эйлеровой цепи допустимо только две вершины с нечетными степенями, поэтому необходимо добавить одно ребро, скажем между вершинами 4 и 7.
Полученная Эйлерова цепь: 0,3,2,0,1,2,5,1,4,5,6,1,7,4,6,9,7,8,9,3,8,5,3.
Схема Эйлеровой цепи (добавленное ребро показано пунктиром):
б) Аналогично пункту а) добавляем ребро {3,0}, замыкая Эйлерову цепь (при этом выполняя условие существования Эйлерова цикла - четность степеней всех вершин). Ребро {3,0} кратное, что не противоречит заданию, но при необходимости можно ввести ребра {0,7} и {4,3} вместо ранее введенных.
Полученный Эйлеров цикл: 0,3,2,0,1,2,5,1,4,5,6,1,7,4,6,9,7,8,9,3,8,5,3,0.
Схема Эйлерова цикла (добавленные ребра показаны пунктиром):
Задача 8
а) Указать в графе Gор Гамильтонов путь. Если такой путь не существует, то в графе Gор изменить ориентацию наименьшего числа ребер таким образом, чтобы в новом графе Гамильтонов путь можно было указать.
б) Указать в графе Gор Гамильтонов цикл. Если такой цикл не существует, то в графе Gор изменить ориентацию наименьшего числа ребер таким образом, чтобы в новом графе Гамильтонов цикл можно было указать.
а) Гамильтонов путь (ребра с измененной ориентацией показаны пунктиром):
б) Гамильтонов цикл (ребра с измененной ориентацией показаны пунктиром):
Задача 9 (Задача о коммивояжере) Дан полный ориентированный симметрический граф с вершинами x1, x2,...xn.Вес дуги xixj задан элементами Vij матрицы весов. Используя алгоритм метода ветвей и границ, найти Гамильтонов контур минимального (максимального) веса. Задачу на максимальное значение Гамильтонова контура свести к задаче на минимальное значение, рассмотрев матрицу с элементами ,где . Выполнить рисунок.
Исходная таблица.
| x1 | x2 | x3 | x4 | x5 | x6 | |
x1 | ¥ | 3 | 7 | 2 | ¥ | 11 | |
x2 | 8 | ¥ | 06 | ¥ | 4 | 3 | |
x3 | 6 | 05 | ¥ | 7 | ¥ | 2 | |
x4 | 6 | ¥ | 13 | ¥ | 5 | ¥ | |
x5 | 3 | 3 | 3 | 4 | ¥ | 5 | |
x6 | 8 | 6 | ¥ | 2 | 2 | ¥ | |
| | | | | | | |
Таблица Е 14
| x1 | x2 | x3 | x4 | x5 | x6 | |
x1 | ¥ | 1 | 5 | 01 | ¥ | 7 | 2 |
x2 | 8 | ¥ | 01 | ¥ | 4 | 1 | |
x3 | 6 | 00 | ¥ | 7 | ¥ | 00 | |
x4 | 1 | ¥ | 8 | ¥ | 01 | ¥ | 5 |
x5 | 01 | 00 | 00 | 1 | ¥ | 00 | 3 |
x6 | 6 | 4 | ¥ | 00 | 00 | ¥ | 2 |
| | | | | | 2 | |
Дробим по переходу x2-x3: