Реферат Пузыри в жидкости
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
ОТДЕЛ ОБРАЗОВАНИЯ ГОМЕЛЬСКОГО ГОРОДСКОГО ИСПОЛНИТЕЛЬНОГО КОМИТЕТА
Государственное учреждение образования
«Гимназия №71 г. Гомеля»
Конкурсная работа
«Пузыри в жидкости»
Исполнитель: Мурашко Вячеслав Игоревич,
ученик 9 А класса
Руководитель: Синюто Алла Николаевна,
учитель физики
Государственного учреждения образования
«Гимназия №71 г. Гомеля»
Гомель
2010
Оглавление
Введение
1. Пузырек всплывает в жидкости
2. Модельный опыт о флотации
3. О «мягких» и «твердых» пузырьках в жидкости
4. Газовый пузырек у границы между жидкостями
5. Кавитация
Заключение
Список использованных источников и литературы
Введение
Цель данной работы - изучение тех процессов, которые происходят или могут происходить с пузырями в жидкости и понять как общие законы физики обнаруживают себя в конкретных явлениях. При выполнении работы применялись следующие методы исследования: анализ различных источников информации; самостоятельное выполнение различных опытов, выявляющих различные свойства пузырьков. Объект исследования – пузыри, которые расположены в жидкости.
Газовый пузырек в жидкости! Ситуация общеизвестная и как будто совершенно понятная: пузырек всплывет, у поверхности вскроется, содержащийся в нем газ уйдет в паровую фазу вблизи поверхности жидкости. Понятно, почему это происходит: поднятие пузырька сопровождается опусканием центра масс жидкости с пузырьком. После вскрытия газового пузырька уровень жидкости понизится на некоторую величину, а это выгодно, как бы мала она ни была. Это упрощенный рассказ о судьбе пузырька в жидкости. Есть множество процессов и явлений, происходящих с ним и зависящих и от его размера, и от свойств жидкости, и от размера и формы сосуда, в котором жидкость находится, и от сорта газа, которым заполнен пузырек, и от много другого.
Пузырек оказывается главным участником очень важных технологических процессов и физических явлений. Эти процессы могут быть организованы лучшим образом, а явления использованы с наилучшим успехом, если будут поняты физические закономерности, управляющие поведением пузырей.
Речь идет о флотации, процессе, при котором руда освобождается от пустой породы, о кавитации – процессе появления несплошностей в жидкости вследствие местного понижения давления (эти несплошности превращаются в пузырьки, которые, схлопываясь, могут изъязвлять и разрушать металл, находящийся в жидкости, в частности гребные винты кораблей), о барботаже – продувании сквозь жидкость газовых пузырьков (их поток приводит к совершенному перемешиванию жидкости, а иной раз используется для ее равномерного прогрева).
1. Пузырек всплывает в жидкости
Полагая, что пузырек сохраняет сферическую форму, запишем выталкивающую его архимедову силу
В записанной формуле учтено, что
Обсудим, как под действием архимедовой силы всплывает пузырек, который, двигаясь медленно, сохраняет сферическую форму.
Рисунок 1 Схемы ламинарного (а) и турбулентного обтекания жидкостью движущегося в ней пузыря
Вокруг пузырька возникают потоки, которые перемещают жидкость от лобовой поверхности пузырька к его тыльной поверхности. Чем дальше от пузырька, тем с меньшей скоростью протекает жидкость, тем менее она «осведомлена», что в ней движется пузырек. В действительности, течет жидкость, а мы видим результат этого течения - всплывание пузырька. Поэтому скорость его всплывания должна зависеть и от того, как движется жидкость, и от его физических свойств.
«Медленным» будем называть такое движение пузырька, при котором перетекание воды от его лобовой к тыльной поверхности не сопровождается появлением завихрений, вода течет спокойно, как бы послойно и слои не перемешиваются между собой. Физики говорят «ламинарно». Путь, по которому движутся слои жидкости можно изобразить линиями (см рис 1. а). При ламинарном течении они не изламываются, взаимно не пересекаются и не пересекают сами себя. В потоке не появляются вихри. Соприкасающиеся слои жидкости получают информацию друг о друге вследствие их взаимного трения. При таком обтекании пузырька жидкостью установившаяся скорость его ламинарного всплывания
Выясним связь между величинами
Естественно предположить, что скорость
и вязкость воды
Так как здесь обсуждается случай очень медленного всплывания пузырька в вязкой жидкости, то естественно предполагать, что энергия, передаваемая всплывающим пузырьком обтекающей его жидкости, главным образом расходуется на преодоление вязкого трения, а не придание жидкости кинетической энергии, которая должна зависеть от массы жидкости, а значит, и от ее плотности.
Перепишем нашу формулу в виде
Точная формула, которую физики получают строго, от нашей отличается лишь множителем
В литературе эту формулу именуют «формулой Стокса», установленной Джорджем Габриэлем Стоксом (1819 – 1903) в 1851г. Ею пользуются и метеорологи, изучая движение капель тумана, и химики, изучая осаждение мелких частиц в жидкостях, и гидробиологи, изучающие осаждение ила. Формула Стокса была использована Р. Милликеном в его классических опытах по определению заряда электрона.
Записанную формулу полезно прочесть не только слева направо (
Такое прочтение обнаруживает ранее скрывавшиеся в формуле грани описываемого ею явления. Так как пузырек всплывает с постоянной скоростью, то, согласно закону Ньютона, сила, вынуждающая его движение,
Воспользуемся знанием величины
Так как для воды вязкость
Опыт по свободному всплыванию «маленького» пузырька в жидкости можно использовать для определения его размера, если известна вязкость жидкости.
Все наблюдали, что при сильном напоре воды в водопроводной системе, стакан наполняется молочно-белой водой, которая со временем просветляется. Мутность воды обусловлена огромным количеством взвешенных в ней газовых пузырьков, рассеивающих свет. А просветление воды наступает вследствие всплывания пузырьков, о чем убедительно свидетельствует появление именно у дна стакана расширяющегося просветленного слоя. Очень легко заметить, как со временем увеличивается ширина просветленного слоя. Располагая лишь часами и линейкой можно убедиться, что граница между мутной и прозрачной зоной движется с постоянной скоростью, и определить эту скорость.
Рисунок 2 Постепенное просветление стакана с газированной водой вследствие всплывания пузырьков
Этот опыт был проделан и найдено, что
В совсем простом опыте со стаканом обычной воды, веря формуле Стокса, фактически измерили размер не видимого глазом пузырька. Ведь мы не видели отдельные пузырьки, а лишь наблюдали эффект рассеяния света множеством пузырьков и расширение у дна стакана прозрачного слоя воды, освободившегося от всплывших пузырьков.
Если захотим проверить, как формула Стокса согласуется с опытом, всякий раз наблюдая пузырек покрупнее, мы убедимся, что начиная с некоторых размеров сферических пузырьков формула Стокса начинает отказывать. Скажем, пузырек, радиус которого
Начиная с некоторой скорости всплывания могло бы оказаться, что при ламинарном обтекании жидкостью пузырька от его лобовой поверхности не будет успевать уводиться нужное количество жидкости. Тогда обязан объявиться иной характер движения жидкости, при котором быстрое перемещение пузырька станет возможным. Этот «иной характер» движения может оказаться следующим. От лобовой поверхности пузырька подгоняемая им жидкость перемещается быстро в направлении движущегося пузырька. В таком режиме движения жидкость в недостаточной степени затекает в «тыл» движущегося пузырька. И в его «тылу» могут возникнуть пустоты, разрывы, завихрения – все то, что в совокупности именуют «турбулентным» течением жидкости. На рис. 1 б) это изображено. В отличие от этого (рис. 1 а), на котором изображено ламинарное движение на рис. 1б линии искривляются, изображая вихри. Такому движению жидкости свойственна не упорядоченность вязкого течения, не взаимные соскальзывания соприкасающихся слоев жидкости, а образование завихрений в «тылу» движущегося пузырька. Упорядоченное вязкое течение сменяется вихревым, турбулентным.
Обсудим связь между выталкивающей силой
Эту энергию жидкость растратит на образование и движение завихрений. В конечном счете она превратится в тепло. Так как при равномерном движении
Величину
Последнюю формулу можно было бы получить, пользуясь соображениями о размерностях.
Вывод: при свободном всплывании пузырька в режиме ламинарного течения воды
Итак, скорость, при которой ламинарное обтекание пузырька жидкостью сменится турбулентным, можно оценить, приравняв силы, тормозящие пузырек,
2. Модельный опыт о флотации
Этот опыт иллюстрирует физическое явление, на котором основан технологический процесс, именуемый флотацией. Газовые пузырьки в этом процессе играют важную роль.
Флотация, а точнее флотационное обогащение - это процесс разделения совокупности двух видов мелких твердых частиц, отличающихся смачиваемостью той жидкостью, в которой они находятся, чаще водой. На поверхности частиц, которые будут плохо смачиваться жидкостью, будут закрепляться газовые пузырьки. Говорят так: образуется флотационный агрегат – частица и прилипшие к ней пузырьки газа. Если средняя плотность такого агрегата
Принципиальная возможность разделения твердых частиц различных сортов с помощью всплывающих газовых пузырьков, широко используется для разделения частиц пустой породы в измельченной руде от частиц, богатых металлом. Именно поэтому явление флотации лежит в основе технологического процесса, используемого в горнорудных обогатительных фабриках.
К самой идее флотации привела не теория, а внимательное наблюдение случайного факта. В конце прошлого века американская учительница (Карри Эверсон), стирая загрязненные маслом мешки, в которых хранился раньше медный колчедан, обратила внимание на то, что крупинки колчедана всплывают с мыльной пеной. Это и послужило толчком к развитию способа флотации.
Возникают следующие вопросы. Как образуются газовые пузырьки во флотационной ванне с жидкостью и частицами твердой породы? При каком соотношении объемов газовых пузырьков и твердых частиц образуемые ими флотационные агрегаты будут всплывать?
Введение газовых пузырьков в объем флотационной волны осуществляется многими различными приемами. Иногда просто продуют воздух через сетки с малыми отверстиями, иногда в объеме ванны проводят химическую реакцию, при которой возникает большое количество газа, например углекислого. Существует так называемая электрофлотация, при которой в ванне образуются газообразные водород и кислород при пропускании тока через воду. Все эти приемы дают возможность регулировать интенсивность процесса формирования газовых пузырьков.
Теперь о флотационном агрегате. Он будет всплывать при условии, если его средняя плотность
и, следовательно, условие всплывания можно записать в виде
Записанное условие всплывания флотационного агрегата выполняется тем лучше, тем меньше объем частиц твердой фазы.
Для проведения модельного опыта требуется изготовить полые стеклянные шарики, которые в воде не падали стремительно, а медленно тонули, так как их плотность была бы немногим больше плотности воды. Шарики были крупными (
Первый моделирует вещество гидрофобное, не любящее воду, не смачиваемое водой, а второй – гидрофильное, любящее воду, смачиваемое ею. Шарики клали на дно стакана и заполняли стакан обычной газированной минеральной водой, из которой выделялись газовые пузырьки. На шарике с жирной поверхностью начинали оседать пузырьки, образовался флотационный агрегат и вскоре шарик всплывал.
В описанной постановке опыта, когда всплывает один шарик, поверхность которого заселена пузырьками, наблюдается любопытное сопутствующее явление. В момент, когда шарик касается поверхности, некоторые пузырьки из числа поднимавших шарик лопаются и он начинает тонуть. А затем, обогатившись очередной порцией газовых пузырьков, выделяющихся из воды, он снова всплывает, и цикл повторяется. Легко понять, что в реальном флотационном процессе, в котором участвует огромное количество всплывающих частиц, у поверхности жидкости будет возникать слой, обогащенный частицами определенного сорта, каждый из которых тонуть не будет. Это так называемый слой флотационной, минерализованной пены. Искусственно или самотеком эта пена удаляется вместе с содержащимися в ней частицами либо полезного минерала, либо пустой породы. Технологам приемлемы оба варианта, только бы произошло отделение частиц минерала, обогащенного полезным ископаемым. Это и было целью процесса.
3. О «мягких» и «твердых» пузырьках в жидкости
«Мягкие» — значит легко деформируемые внешней силой, «твердые» — значит не поддающиеся ее воздействию. Будем придерживаться этих, не очень строгих определений и попытаемся применить их к газовым пузырям в жидкости.
Решим вначале задачу о связи между числом атомов газа, заключенных в пузыре, и его радиусом R, полагая при этом, что жидкость, в объеме которой расположен пузырь» находится под постоянным давлением р0. В поисках интересующей нас связи мы будем считать, что пузырь «равновесный», или лучше сказать «уравновешенный», а это означает, что его стенка не перемещается ни от центра пузыря, ни к его центру. В этом случае давление заключенного в нем газа,
Давление газа
где
Равенство растягивающего и сжимающего давлений, осуществляющееся в условиях равновесия, запишем следующей главной формулой:
Записанная формула и выражает интересующую нас связь между NT и R.
Та внешняя сила, которой можно «щупать» пузырь для того, чтобы выяснить «мягкий» он или «твердый», определяется давлением Р0. Его можем изменять по собственному желанию. Если
Для того чтобы наши рассуждения обрели количественную меру, оценим радиус пузыря
Итак, «твердые» пузыри в воде — это те, радиус которых значительно меньше микрометра, а «мягкие» — это те, радиус которых значительно больше микрометра.
«Мягкие» и «твердые» пузыри отличаются не только размерами. Оказывается, что во многих реальных ситуациях они обнаруживают различные свойства и различное поведение.
Для «мягкого» пузырька, когда лапласовским давлением можно пренебречь, из главной формулы следует
Во-первых, оно означает, что объем образовавшегося пузыря равен сумме объемов объединившихся.
Во-вторых, оказывается, что два объединившихся пузыря имеют поверхность меньшую, чем та, которую они имели до объединения. Действительно, условие суммирования объемов двух пузырей, радиусы которых
Это равенство можно переписать в иной форме:
Так как
Именно в этом неравенстве и содержится энергетическое оправдание объединения «мягких» пузырей: энергия заключенного в них газа не меняется, а связанная с ними поверхностная энергия уменьшается. Так что в процессе слияния общая энергия уменьшается — слияние «мягких» пузырей энергетически выгодно.
Теперь о слиянии «твердых» пузырей. Для них из главной формулы следует
При этом объем суммарного пузыря должен превосходить сумму объемов слившихся пузырей:
Вывод: при слиянии «твердых» пузырей поверхность, а значит, и энергия поверхности, остаются неизменными. Казалось бы, и объединяться им нечего. Есть, однако, оправдание процесса слияния твердых пузырей. Оно заключается в том, что слиянию пузырей сопутствует расширение газа.
4. Газовый пузырек у границы между жидкостями
Газовый пузырек, проходящий через границу между жидкостями,— участник многих очень важных технологических процессов. Вот пример такого процесса. Для того чтобы выплавляемый металл был высококачественным, тщательно перемешанным, сквозь жидкий расплав пропускают пузырьки газа. Производят, как говорят металлурги, барботаж расплава. В виде пузырьков газ проходит и сквозь слой металла, и сквозь слой находящегося на нем жидкого шлака. А между слоями — граница, и пузырьки газа должны ее преодолеть. Для металлургов очень важно знать закономерности этого процесса.
Вначале попробуем представить себе судьбу газового пузырька радиуса R, расположенного в нижней жидкости вблизи границы между нижней и верхней жидкостями. Для облегчения нашей задачи упростим ее и предположим, что плотности жидкостей одинаковы и равны
Газовый пузырек либо пройдет сквозь границу, либо задержится границей и останется на ней.
Судьба газового пузырька определится совместным действием трех сил. Перечислим и оценим эти силы. Одна из них — выталкивающая сила
Для того чтобы оценить эти силы, мы поступим следующим образом: расположим пузырь на границе так, чтобы его вершина отстояла от границы на расстояние h (см рис. 3). Затем сместим пузырек вверх на расстояние
Рисунок 3 Схема плоской границы между жидкостями, «пробиваемой» всплывающим пузырьком
Уменьшение потенциальной энергии пузырька при его смещении на
Это — первая сила.
Уменьшение граничной энергии, связанное с исчезновением части границы, определится формулой
Изменение этой величины при переходе от h к
Это — вторая сила.
Энергия
Это — третья сила.
Вот теперь можно записать силу, действующую на пузырек, расположенный на границе:
Пузырек прекратит всплывание при F = 0, т. е. при
А происходит это именно на границе при условии, что
Формулу, следующую из нашего расчета, можно получить, пользуясь лишь соображениями о размерностях.
Итак, формула есгь, обсудим ее.
При
В этом случае R * < 0 и граница должна быть проницаема для пузырьков любого размера. Если же
Но элементарный расчет может иметь отношение к действительности лишь в случае, если подход пузырька к границе снизу сопровождается ее прорывом при соприкосновении пузырька с жидкостью верхнего слоя. Такая ситуация вполне реальна. Во многих же случаях действительность оказывается сложнее нашей упрощенной схемы и преодоление пузырьком границы происходит совсем не так, как мы это предполагали в нашем расчете. Обсудим и иной механизм преодоления границы пузырьком.
Вначале о результатах совсем простых опытов. В сосуде расположены два слоя несмешивающихся жидкостей. В объем нижней жидкости вдуваются газовые пузырьки, и они, двигаясь вверх, проходят через границу между жидкостями.
В каждом из слоев пузырьки просто всплывают. А вот когда на пути пузырька оказывается граница между слоями жидкостей, возникают неожиданные явления, отличающиеся от обсужденных ранее. Они нас и интересуют. Возьмем для опыта стеклянный сосуд, нальем в него две несмешивающиеся жидкости (например, вода и подсолнечное масло) и сквозь стекло разглядим все, что происходит на границе между ними. В нижний слой жидкости газовые пузыри выводились через иглу шприца.
Опыты свидетельствуют о том, что явлению, которое мы наблюдали сопутствуют два эффекта. Оказывается, что, если в объем нижней жидкости последовательно вспрыскивать маленькие пузырьки они скапливаются под границей, объединяются и, лишь достигнув определенного размера
Рисунок 4 Схема границы, изгибаемой всплывающим пузырьком
Между газом, заключенным в пузырьке, и верхней жидкостью остается прослойка нижней жидкости, как это и изображено на схематическом рисунке (см рис. 4).
Вот теперь попытаемся оценить
Предположим, что плотности граничащих жидкостей практически одинаковы и равны
. В рассматриваемой ситуации на пузырек, отделенный от границы между жидкостями тонким слоем нижней жидкости действуют две силы. Одна из них – выталкивающая сила, стремящаяся продавить пузырек сквозь границу. Другая сила возникает, когда всплывающий пузырек деформирует границу между жидкостями. Эта сила стремится воспрепятствовать увеличению площади между жидкостями в том месте, где пузырек стремится ее прорвать. Эту силу
вычислим, упростив форму границы. В этом упрощении формы границы в основном и заключается упрощенность расчета.
Силу
можно оценить, следуя вот каким рассуждениям. Перемещение газового пузырька вверх сопровождается увеличением площади цилиндрической границы между верхней и нижней жидкостями. Если пузырек сместится на величину
, то сопутствующее этому увеличение поверхностной энергии
. Это означает, что всплыванию пузырька будет препятствовать сила
. Вот теперь из условия
, мы легко определим критический размер пузырька, при котором сила
оторвет его от столба нижней жидкости. Окутанный ею пузырек всплывает в верхней жидкости. Оценка R* оказывается следующей:
.
Из формулы следует, что при разумных значениях величин, определяющих R* (
Дж/м2,
кг/м3), оказывается, что
м.
Теперь о втором эффекте. Оказывается, что пузырек, прорывающийся через границу в «верхнюю» жидкость, уносит с собой немного «нижней» жидкости, даже если она и тяжелее.
5. Кавитация
Это понятие разъясняется так: образование разрывов сплошности жидкости в результате местного понижения давления в ней. Разрывы жидкости, это конечно же пузырьки. Слово «кавитация» происходит от латинского слова cavitas, что означает пустота.
Временно поставим перед собой иную цель: ознакомимся с основной закономерностью, которой подчиняется жидкость, текущая в трубке. Представим себе горизонтальную трубку переменного сечения, по которой течет жидкость. Там, где площадь сечения поменьше, жидкость течет быстрее, а там, где побольше, - медленнее. Согласно закону сохранения энергии, можно утверждать следующее. Над выделенным объемом текущей жидкости совершается работа сил давления, вынуждающих ее течение. Если жидкость не обладает вязкостью, то эта работа будет расходоваться только на изменение ее кинетической энергии. Закон сохранении энергии дает право приравнять работу сил давления изменению кинетической энергии жидкости. Из этого равенства следует уравнение Даниила Бернулли, которое выполняется в любом сечении трубки:
.
В этом уравнении
- плотность жидкости,
- скорость ее течения,
- давление жидкости в потоке, а
- величина постоянная. Прочесть ее можно так: сумма плотности кинетической энергии и давления в текущей жидкости остается неизменной.
Записанное уравнение является фундаментальным в науке о жидкости.
Всмотримся в формулу внимательно. Вот что формула гласит: чем уже сечение трубки, тем больше
, чем больше
, тем меньше
, а это означает», что
может оказаться настолько большим, что давление
станет меньше некоторого критического
. Газовые или паровые пузырьки, имеющиеся в движущейся жидкости и попавшие зону, где
, начинают увеличиваться в объеме, жидкость «кавитирует», превращаясь в пенообразную среду. Перемещаясь вместе с потоком в область, где давление
, пузырьки начинают схлопываться и исчезают.
Итак, мы с уверенностью предсказываем появление пузырьков в текущей жидкости, основываясь, как на фундаменте, только на законе сохранения энергии. Фундамент надежный и пузырьки искать следует.
В действительности кавитация может происходить и тогда, когда в жидкости по какой-либо причине возникают участки, в которых скорость ее движения различна. Например, вблизи вращающихся лопастей теплохода, или вблизи стержня, вибрирующего в воде.
«Капля камень точит»- это известно всем. А вот, что пузырек металл разрушает, - это кажется не общеизвестно. Зарегистрировано множество случаев разрушения гребных винтов быстроходных кораблей кавитационными пузырьками. Эти разрушения иной раз выводят винт из строя всего за несколько часов хода корабля. Кавитационная зона вблизи вращающегося гребного винта строителям кораблей тщательно исследуется с целью избрать оптимальную форму, при которой без ущерба для прочих характеристик корабельного винта его кавитационнная стойкость будет наибольшей. Это важный этап в конструировании и изготовлении корабля.
А вот еще один пример разрушающего воздействия кавитации. Если в воде будет вибрировать металлический стержень, его торцевая поверхность покроется очагами кавитационного разрушения: пузырьки металл разрушают.
Есть несколько предположений о механизме передачи летящего пузырька поверхности металла. Достигнув поверхности препятствия, пузырек может быстро схлопнуться, возбудить ударную волну, и это повлечет за собой удар воды по поверхности. Физики, подробно, изучавшие кавитационные разрушения металлов, убедились в том, что импульсные давления, воспринимаемые поверхностью, оказываются достаточными, чтобы пузырьки создавали и развивали очаги разрушений на поверхности металла. Например, так: многократно повторяющиеся импульсные напряжения приводят к локальным усталостным разрушениям.
Заключение
В ходе выполнения работы были рассмотрены и изучены только часть вопросов, связанных с изучением свойств пузырей в жидкости.
В каждом разделе работы были рассмотрены различные процессы, происходящие с пузырями в жидкости и показано, как общие законы физики обнаруживают себя в этих явлениях. Так, при свободном всплывании пузырька в режиме ламинарного течения воды применялась формула Дж. Г. Стокса, для определения давление газа, заключенного в пузыре - закон Менделеева — Клайперона, а основная закономерность, которой подчиняется жидкость, текущая в трубке, описывается уравнение Д. Бернулли, которое является фундаментальным в науке о жидкости.
Можно сделать вывод, что пузырек оказывается главным участником очень важных технологических процессов и физических явлений.
В работе рассмотрены следующие вопросы: о флотации, процессе, при котором руда освобождается от пустой породы, о кавитации – процессе появления несплошностей в жидкости вследствие местного понижения давления (эти несплошности превращаются в пузырьки, которые, схлопываясь, могут изъязвлять и разрушать металл, находящийся в жидкости, в частности гребные винты кораблей), о барботаже – продувании сквозь жидкость газовых пузырьков (их поток приводит к совершенному перемешиванию жидкости, а иной раз используется для ее равномерного прогрева).
Выполнен модельный опыт о флотации.
В процессе выполнения работы получены дополнительные знания по физике, которые могут быть использованы в дальнейшей учебной деятельности.
В заключении следует отметить, что тематика данной исследовательской работы является достаточно актуальной и поэтому и достаточно интересной.
Список использованных источников и литература
1. Гегузин Я.Е. Пузыри. – М.: Наука, 1985. – 176 с.
2. Перельман Я.И. Занимательная физика. Книга 1. – М. Наука, 1990
3. Кутателадзе С.С., Накоряков В.Е. Тепломассообмен и воны в газожидкостных системах. – Новосибирск: Наука, 1984. – 301 с.
Силу
Из формулы следует, что при разумных значениях величин, определяющих R* (
Теперь о втором эффекте. Оказывается, что пузырек, прорывающийся через границу в «верхнюю» жидкость, уносит с собой немного «нижней» жидкости, даже если она и тяжелее.
5. Кавитация
Это понятие разъясняется так: образование разрывов сплошности жидкости в результате местного понижения давления в ней. Разрывы жидкости, это конечно же пузырьки. Слово «кавитация» происходит от латинского слова cavitas, что означает пустота.
Временно поставим перед собой иную цель: ознакомимся с основной закономерностью, которой подчиняется жидкость, текущая в трубке. Представим себе горизонтальную трубку переменного сечения, по которой течет жидкость. Там, где площадь сечения поменьше, жидкость течет быстрее, а там, где побольше, - медленнее. Согласно закону сохранения энергии, можно утверждать следующее. Над выделенным объемом текущей жидкости совершается работа сил давления, вынуждающих ее течение. Если жидкость не обладает вязкостью, то эта работа будет расходоваться только на изменение ее кинетической энергии. Закон сохранении энергии дает право приравнять работу сил давления изменению кинетической энергии жидкости. Из этого равенства следует уравнение Даниила Бернулли, которое выполняется в любом сечении трубки:
В этом уравнении
Записанное уравнение является фундаментальным в науке о жидкости.
Всмотримся в формулу внимательно. Вот что формула гласит: чем уже сечение трубки, тем больше
Итак, мы с уверенностью предсказываем появление пузырьков в текущей жидкости, основываясь, как на фундаменте, только на законе сохранения энергии. Фундамент надежный и пузырьки искать следует.
В действительности кавитация может происходить и тогда, когда в жидкости по какой-либо причине возникают участки, в которых скорость ее движения различна. Например, вблизи вращающихся лопастей теплохода, или вблизи стержня, вибрирующего в воде.
«Капля камень точит»- это известно всем. А вот, что пузырек металл разрушает, - это кажется не общеизвестно. Зарегистрировано множество случаев разрушения гребных винтов быстроходных кораблей кавитационными пузырьками. Эти разрушения иной раз выводят винт из строя всего за несколько часов хода корабля. Кавитационная зона вблизи вращающегося гребного винта строителям кораблей тщательно исследуется с целью избрать оптимальную форму, при которой без ущерба для прочих характеристик корабельного винта его кавитационнная стойкость будет наибольшей. Это важный этап в конструировании и изготовлении корабля.
А вот еще один пример разрушающего воздействия кавитации. Если в воде будет вибрировать металлический стержень, его торцевая поверхность покроется очагами кавитационного разрушения: пузырьки металл разрушают.
Есть несколько предположений о механизме передачи летящего пузырька поверхности металла. Достигнув поверхности препятствия, пузырек может быстро схлопнуться, возбудить ударную волну, и это повлечет за собой удар воды по поверхности. Физики, подробно, изучавшие кавитационные разрушения металлов, убедились в том, что импульсные давления, воспринимаемые поверхностью, оказываются достаточными, чтобы пузырьки создавали и развивали очаги разрушений на поверхности металла. Например, так: многократно повторяющиеся импульсные напряжения приводят к локальным усталостным разрушениям.
Заключение
В ходе выполнения работы были рассмотрены и изучены только часть вопросов, связанных с изучением свойств пузырей в жидкости.
В каждом разделе работы были рассмотрены различные процессы, происходящие с пузырями в жидкости и показано, как общие законы физики обнаруживают себя в этих явлениях. Так, при свободном всплывании пузырька в режиме ламинарного течения воды применялась формула Дж. Г. Стокса, для определения давление газа, заключенного в пузыре - закон Менделеева — Клайперона, а основная закономерность, которой подчиняется жидкость, текущая в трубке, описывается уравнение Д. Бернулли, которое является фундаментальным в науке о жидкости.
Можно сделать вывод, что пузырек оказывается главным участником очень важных технологических процессов и физических явлений.
В работе рассмотрены следующие вопросы: о флотации, процессе, при котором руда освобождается от пустой породы, о кавитации – процессе появления несплошностей в жидкости вследствие местного понижения давления (эти несплошности превращаются в пузырьки, которые, схлопываясь, могут изъязвлять и разрушать металл, находящийся в жидкости, в частности гребные винты кораблей), о барботаже – продувании сквозь жидкость газовых пузырьков (их поток приводит к совершенному перемешиванию жидкости, а иной раз используется для ее равномерного прогрева).
Выполнен модельный опыт о флотации.
В процессе выполнения работы получены дополнительные знания по физике, которые могут быть использованы в дальнейшей учебной деятельности.
В заключении следует отметить, что тематика данной исследовательской работы является достаточно актуальной и поэтому и достаточно интересной.
Список использованных источников и литература
1. Гегузин Я.Е. Пузыри. – М.: Наука, 1985. – 176 с.
2. Перельман Я.И. Занимательная физика. Книга 1. – М. Наука, 1990
3. Кутателадзе С.С., Накоряков В.Е. Тепломассообмен и воны в газожидкостных системах. – Новосибирск: Наука, 1984. – 301 с.