Реферат

Реферат на тему Современные представления о механизмах регуляции мозгового кровотока

Работа добавлена на сайт bukvasha.net: 2015-01-02

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 8.11.2024


Регуляция мозгового кровообращения давно является актуальной проблемой. Несмотря на большой фактический материал, накопленный по данной проблеме, вопрос о физиологических механизмах лежащих в основе регулирования мозгового кровообращения остаётся открытым. Мозг человека, составляя лишь 2% от общей массы тела, утилизирует 20-25% потребляемого организмом кислорода. Кровообращение в головном мозге нельзя рассматривать изолированно от кровообращения всего организма в целом. В неразрывной связи с МК находятся такие параметры, как системное артериальное давление (САД), общее периферическое сопротивление сосудов, центральное венозное давление, объем циркулирующей крови и т.д. Кровоснабжение мозга характеризуется наличием оптимального режима, обеспечивающего в процессе жизнедеятельности непрерывное и своевременное пополнение его энергетических и иных затрат. Это достигается последовательным включением ряда факторов, приводящих в действие механизмы саморегуляции мозгового кровообращения.
Регуляция мозгового кровотока крайне сложна. Из литературы можно заключить, что в регуляции принимает участие несколько взаимосвязанных регуляторных контуров, каждый из которых может функционировать самостоятельно. Действие их направлено на поддержание в определенных пределах химического состава ткани мозга (а соответственно и оптимальных режимов питания) и регуляции физического статуса мозговой ткани (ее объема, количества жидкости и т.д.). Выделяют 4 регуляторных контура: нейрогенный, гуморальный, метаболический и миогенный.
Роль нервной системы
В настоящее время считается общепризнанным активное участие нервной системы в регуляции мозгового кровообращения. Результаты морфологических исследований показали наличие в стенках мозговых сосудов адренергической и холинэргической иннервации.
Симпатическую иннервацию сосуды головного мозга получают от узлов шейного отдела симпатического пограничного ствола, включая звездчатый ганглий. На различных животных было установлено, что раздражение шейных и позвоночных нервов вызывает сужение сосудов мозга и уменьшение мозгового кровотока. В ряде исследований показано важное значение клеток синего пятна, которое представляет собой основное норадренергическое образование мозга. В них обнаружено высокое содержание катехоламинов.
Важное значение в регуляции МК имеет холинергическая система. Парасимпатические волокна отходят от лицевого нерва и коленчатого ганглия, присоединяясь к синокаротидному сплетению, проникают в полость черепа. Холинергические сплетения обнаружены в адвентиции артерий и пиальных сосудов. Гистохимические исследования показали, что волокна симпатических и холинергических нервов следуют рядом, образуя единое терминальное сплетение.
Роль парасимпатической системы в регуляции мозгового кровообращения неоднозначна. Исследования показали противоречивые результаты. При стимуляции парасимпатических нервов и введении ацетилхолина обнаружили расширение сосудов мозга, которое снималось атропином. Активное расширение пиальных артерий в ответ на снижение системного артериального давления устраняется внутривенным введением атропина. Тогда как стимуляция холинергических ветвей большого каменистого нерва не приводила к изменению тотального мозгового кровотока.
Особый интерес представляет изучение роли аортальных и каротидных рефлексогенных зон, содержащих баро- и хеморецепторы в регуляции мозгового кровообращения. В ряде исследований активация каротидных барорецепторов повышением давления в каротидном синусе или электрическая стимуляция синокаротидных нервов вызывали расширение сосудов мозга параллельно снижению артериального давления. В ответ на включение каротидных барорецепторов пережатием общей сонной артерии или денервации каротидных зон – сосуды суживались, и артериальное давление повышалось. Другие исследователи наблюдали противоположные реакции сосудов. Наряду с холинергической иннервацией мозговых сосудов современные исследователи обнаружили наличие пуринергических и пептидергических нервных волокон в стенках мозговых сосудов. В артериях головного мозга найдены моноаминоациты (тучные, хромафинные клетки, меланофоры), которые функционально связаны в единую систему биологических регуляторов.
Исследования последних лет подтверждают важную роль ствола мозга в обеспечении адекватного церебрального кровотока. Показаны нарушения регуляции кровотока в эксперименте при разрушении стволовых и спинальных путей. Роль нервного компонента в местных сосудистых реакциях головного мозга была показана Ю.А. Москаленко и его сотрудниками.
В настоящее время была обобщена большая группа химических передатчиков сигналов между нейронами и от нейронов на эффекторные клетки получившая название нейротрансмиттеры (НТ). Именно НТ создают возможность объединения отдельных нейронов в целостный головной мозг и позволяет ему успешно выполнять все его многообразные и жизненонеобходимые функции.
Нейротрансмиттеры делят на нейромедиаторы – прямые передатчики нервного импульса, дающие пусковые эффекты (изменение активности нейрона, сокращение мышцы, секрецию железы), и нейромодуляторы – вещества модифицирующие эффект нейромедиаторов. Соотношение концентрации и активности нейромедиаторов определяет функциональное состояние большинства постсинаптических клеток. Нейромодуляторы обычно действуют более локально в определённых зонах мозга.
Большинство НТ синтезируется в нейронах. Затем они транспортируются в везикулы в обмен на накопленные там Н+ (аккумуляция протонов в везикулах осуществляется особой Н+-АТФазой за счёт энергии АТФ). Эти везикулы расположены в нервном окончании, НТ хранятся в них в высоких концентрациях (до 100-500 мМ). Когда распространяющийся по нерву потенциал действия приходит в зону везикул, он открывает потенциалзависимые Са2+-каналы, ионы Са2+ входят в нервные клетки, что приводит к выбросу их из НТ в синапс.
Различают возбуждающие и ингибирующие, или тормозящие НТ. Эффекты первых преобладают в состоянии бодрствования и высокой функциональной активности, вторых - в покое и особенно во время спокойного сна без сновидений. По химической структуре НТ можно разделить на 5 классов: аминокислоты, амины и их производные, нейропептиды, нуклеозиды и нуклеотиды, стероиды. Последние 2 класса пока представлены едиными веществами.
Все НТ диффундируют через синапс и на наружной стороне плазматической мембраны постсинаптической клетки связываются со специфическими рецепторами. НТ не требуется проникать через мембрану клетки, внутрь клетки поступает не сам НТ, а сигнал, возникающий при связывании НТ с рецептором. Восприятие, преобразование, усиление и передачу сигнала внутрь клетки и затем внутрь её органелл осуществляют сигнал-трансдукторные системы (СТС). Рецепторами нейромедиаторов являются регуляторные субединицы быстрых ионных каналов (Na+ – или Сl-) – это ионотропные рецепторы. Эффекты нейромодуляторов реализуются более сложными СТС, включающими рецепторы, ГТФ-зависимые G-белки, мембранные ферменты, Ca2+ - или К+ - каналы, вторые посредники и их белковые рецепторы (чаще всего протеинкиназы) – это метаботропные рецепторы. Разные механизмы реализации сигналов определяют временные различия: нейромедиаторы действуют за время нервного импульса – миллисекунды (быстрые ответы клеток), модуляторы – за секунды или минуты, такие эффекты называются медленными.
Главные медиаторы головного мозга – аминокислоты. К возбуждающим относятся глутамат и аспартат. При освобождении в синапс они через ионотропные рецепторы открывают быстрые натриевые каналы, что приводит к быстрому входу в постсинаптический нейрон ионов натрия. Это деполяризует плазматическую мембрану и вызывает возбуждение нейрона. Возбуждающие аминокислоты необходимы для всех функций мозга, включая поддержание его тонуса, бодрствования, психологической и физической активности, регуляцию поведения, обучение, память, восприятие чувствительных и болевых импульсов. Однако их избыток вызывает тяжёлые заболевания. Например, избыток глутамата приводит к судорожным приступам. При ишемии в синапс выделяется так много глутамата, что вызывает чрезмерное накопление ионов Ca2+ в постсинаптическом нейроне и его перевозбуждение (нейротоксическое действие) – возникает инсульт.
Ещё один возбуждающий медиатор – ацетилхолин (АХ), активирующий ионотропные N-холинорецепторы с открытием тех же быстрых натриевых каналов. Через эти рецепторы АХ участвует в функциях базальных ганглиев головного мозга, связанных с регуляцией двигательной активности и мышечного тонуса.
Главный ингибирующий нейромедиатор головного мозга – гамма-аминомаслянная кислота (ГАМК). Образуется из глутамата, связывается с ГАМК ионотропными ГАМКА рецепторами (субъединицами хлоридных каналов), что приводит к их открытию и быстрому входу в постсинаптический нейрон ионов Cl-. Эти ионы вызывают гиперполяризацию и в результате - торможение нейрона
Аминокислота глицин – особый ингибирующий нейромедиатор спинного мозга. Он действует по аналогичному механизму, а антагонистом его рецепторов является стрихнин.
К нейромодуляторам относятся все нейромедиаторы, но их модулирующие эффекты реализуются не через ионно-, а через метаботропные рецепторы. Ацетилхолин через М-холинорецепторы включает 3 разные СТС, что снижает уровень цАМФ, открывает К+ - каналы и вызывает накопление липидных вторых посредников и затем ионов Са2+. Через М-холинорецепторы (их в мозге больше чем N-рецепторов) АХ стимулирует образование условных рефлексов и память. Так при болезни Альцгеймера характерна ранняя гибель холинергических нейронов. Через эти рецепторы АХ реализует активность мотонейронов спинного мозга и регуляцию внутренних органов парасимпатическими нервами системы. ГАМК и её синтетические агонисты через оба типа рецепторов ГАМКА и ГАМКВ – снижают активность головного мозга.
Существует большое количество специализированных нейромодуляторов. В головном мозге из прогестерона образуются активирующие мозг нейромодуляторы – нейростероиды. В отличие от большинства стероидных гормонов они действуют не путём проникновения в ядро клетки и соединения с ядерными рецепторами, а в результате активации ГАМКА– рецепторов нейронов.
Описанные 3 типа СТС опосредуют действие и некоторых других ингибирующих модуляторов, в том числе и пока единственного нуклеозидного НТ – аденозина. Через свои А1-рецепторы он снижает концентрацию ионов Са2+ в нейронах, что ингибирует высвобождение многих НТ, снижает тонус головного мозга, способствует утренней вялости.
Важный класс нейромодуляторов – моноамины: катехоламины (КА) и индолилалкиламины. КА синтезируются из аминокислоты тирозина, активность ключевого фермента синтеза тирозингидроксилазы увеличивается системой цАМФ – протеинкиназа А. КА обеспечивают функционирование симпатико-адреналовой системы. Дофамин освобождается в основном в синапсах базальных ядер головного мозга, норадреналин – в стволе мозга и окончаниях симпатических нервов. Дофамин – тормозной модулятор, снижающий эффекты возбуждающего медиатора АХ.
Норадреналин вызывает накопление в клетке ионов Са2+ (через α1-адренорецепторы) и цАМФ (через β-адренорецепторы). Активируется ретикулярная формация ствола, что тонизирует головной мозг, включая кору больших полушарий.
Однако те же КА через α2-адренорецепторы снижают концентрацию ионов Са2+ и цАМФ, что приводит к уменьшению выделения норадреналина и других НТ. ГАМК, аденозин и селективные антагонисты α2-адренорецепторов реализуют и другую приспособительную стратегию – толерантную. Для неё характерно снижение потребления кислорода, температуры тела и катаболизма с уменьшением активности головного мозга и других физиологических систем. В результате значительно увеличивается устойчивость организма ко многим экстремальным факторам.
Индолалкиламины образуются из аминокислоты триптофана: серотонин – в стволе головного мозга и энтерохромаффинных клетках кишечника, мелатонин – в эпифизе. Серотонин – снижает агрессивность, страх, депрессию, стимулирует пищевое поведение, сон и снижает болевые условные рефлекса, способствует обучению и лидерству. Мелатонин преимущественно вырабатывается ночью и способствует сну, тормозит выделение гонадотропных гормонов. Оба индолалкиламина снижают половую активность.
Наряду с этим большие успехи, достигнутые в последнее десятилетие в изучении синаптических молекул позволяют выделить группу атипичных трансмиттеров или нейрональных мессенжеров. К таким соединениям относят газ – оксид азота (NO), цинк, выполняющий функции антагонистического котрансмиттера NMDA-рецепторов, а также локализованный в ганглиальных клетках d-серин, являющийся эндогенным лигандом места связывания глицина, входящего в состав NMDA-рецепторного комплекса.
Метаболическая, миогенная и гуморальная регуляция
Миогенная регуляция мозгового кровотока осуществляется за счёт изменения внутриартериального давления и прямой ответной реакции мышц сосудистой стенки в виде сужения артерий при его повышении или их расширения при его снижении (феномен Остроумова - Бейлисса). Действие этой реакции кратковременно.
Важной особенностью головного мозга является его высокая метаболическая активность. При поражениях головного мозга нарушения кровообращения приводят к сопряженным изменениям метаболических процессов независимо от характера повреждающего воздействия - травмы, компрессии, гипоксии мозга. Нарушения кровообращения и метаболизма мозга развиваются в определенной последовательности - накопление лактата, тканевой ацидоз, паралич вазомоторов, нарушение ауторегуляции, нарушение регуляции внутричерепного давления, исчезновение реакции церебральных сосудов на изменение концентрации углекислого газа, утрата контроля метаболизма, развитие отека мозга.
Активным фактором, влияющим на сосудистую стенку, является напряжение углекислоты в артериальной крови. Механизм действия СО2 на сосуды мозга изучен в работах многих авторов.
Величина просвета артерий зависит от напряжения СО2 в капиллярах и тканях, концентрации ионов Н+ в околососудистом пространстве и напряжения О2. Повышение напряжения СО2 вызывает выраженную дилатацию сосудов. Так, при повышении рСО2 вдвое мозговой кровоток также удваивается. Действие СО2 опосредовано соответствующим увеличением концентрации Н+, образующихся при диссоциации угольной кислоты. Прочие вещества, при накоплении которых увеличивается концентрация ионов водорода, также усиливают мозговой кровоток. Уменьшение напряжения кислорода вызывает расширение сосудов, а увеличение - сужение. Однако влияние рО2 на просвет сосудов ниже, чем влияние рСО2. Влияние углекислоты на церебральную гемодинамику объясняется либо непосредственным влиянием на сосудистую сеть, расположенную вблизи артериального конца капилляров, либо изменениями рН цереброспинальной жидкости, окружающей артериолу.
Многие авторы полагают, что действие СО2 на сосуды мозга реализуется с помощью нервных механизмов. Существенная роль в механизме действия СО2 отводится также местным нервным механизмам. Реакция мозгового кровотока на гиперкапнию ослабевает при гипотензии, ишемии мозга. Этот эффект объясняют дилатацией артерий под действием накопившихся в условиях патологии кислых продуктов метаболизма и уменьшением резервных возможностей для их дальнейшего расширения.
Влияние кислорода на цереброспинальное кровоснабжение выражено слабее по сравнению с СО2. Однако гипероксия и избыточная оксигенация крови ведут к сужению сосудов мозга, а гипоксия наоборот вызывает дилатацию и увеличение церебрального кровоток. Считают, что вазоконстрикторная реакция при гипербарической оксигенации носит приспособительный характер, защищая мозг от проникновения в него избыточного кислорода.
В процессе адаптации сосудистого тонуса мозга к гипоксии предполагается участие тканевого метаболизма путем увеличения анаэробной передачи продукции АТФ в гладких мышцах мозговых сосудов.
В литературе имеются данные об участии ионов К+ и Н+ в регуляции тонуса сосудов мозга. Биохимические исследования свидетельствуют о том, что под влиянием Са2+ интенсивность потребления кислорода и величина дыхательного контроля мозга повышаются, в тоже время увеличение концентрации ионизированного Са2+ в растворимой цитоплазме обеспечивает метаболические эффекты синаптической передачи нервных импульсов. Ионы Са2+ являются важным компонентом сосудистой стенки, запускающим сократительный мышечный механизм. Концентрация Са2+ оказывает влияние на диаметр пиальных артерий: увеличение ее приводит к их сужению, а снижение к расширению этих сосудов.
К метаболическим факторам регуляции мозгового кровотока относятся сдвиги газового состава крови, напряжения в ней кислорода, углекислоты. Изменения газового состава крови изменяет рН среды, окружающей сосуды, вызывает сдвиг концентрации различных вазоактивных веществ.
При различных изменениях системной гемодинамики роль данного механизма уникальна.
Монооксид азота образуется в эндотелии сосудов, способствует расширению микрососудов и является постоянным регулятором микроциркуляции. Согласно данным, большое количество этого вещества образуется в эндотелии капилляров. Угнетение его синтеза существенно изменяет скорость кровотока в капиллярах мышц. Предполагается, что угнетение синтеза монооксида азота в эндотелии после тяжелой ишемии ведет к массовой адгезии нейтрофилов к стенкам микрососудов и к ухудшению или прекращению их «проходимости» для крови.
В регуляции МК проявляют себя гуморальные механизмы, которые разделяют на 2 группы: 1 – гормоны, вырабатываемые нервными окончаниями железистых и тучных клеток, действие которых направлено на тонус прилежащих сосудов; 2 – гормоны, вырабатываемые специализированными органами внутренней секреции. Гуморальные факторы обладают выраженными вазоактивными свойствами. Брадикинин вызывает у человека церебральную дилатацию и увеличение кровотока.
Под влиянием ацетилхолина в опытах описано как расширение, так и сужение пиальных артерий. Аппликация серотонина на поверхность мозга вызывает длительную констрикцию крупных пиальных артерий за счет преимущественного действия на Д-рецепторы сосудистой стенки. Отмечено двухфазное действие дофамина – первичное сужение с последующей дилатацией. Важная роль принадлежит b-адренорецепторам в регуляции тонуса сосудов и метаболизма мозга у человека. Установлены региональные различия в распределении a- и b-адренорецепторов в сосудах мозга. Каротидная артериальная система более чувствительна к норадреналину, чем позвоночная. Простагландины вызывают неоднозначные реакции на внутри- и внечерепные сосуды. Теория, объясняющая многосторонние действия простагландинов основаны на способности их влиять на синтез циклических нуклеотидов, главным образом цАМФ.
Метаболизм головного мозга носит аэробный характер и для обеспечения жизнедеятельности и анатомической целостности его структуры мозгу необходимо до 20% всей циркулирующей крови и 25% всего кислорода. Этим определяется такой высокий кровоток, высокий уровень потребления кислорода, многоуровневая, дублированная система регуляции мозгового кровообращения и механизмы компенсации при поражении одного или нескольких бассейнов кровоснабжения. При полном прекращении поступления кислорода и глюкозы, вследствие нарушения кровотока или при других причинах через 1-3 секунды происходит потеря сознания, через 4-6 минут необратимая гибель мозга. Период 4-6 минут критический. При этом последующая перфузия не приводит к восстановлению кровотока на различных территориях мозга вследствие перекрытия капиллярного отдела микроциркуляторного русла. Перемещение крови происходит из областей мозга, менее активных в функциональном отношении, в области с интенсивной деятельностью. Величина локального кровотока в это время значительно повышается в одних областях, снижаясь одновременно в других на фоне стабильного или, реже, несколько увеличенного кровотока в мозге в целом. Но этот критический период в 4-6 минут может расширяться до десятков минут при переохлаждении и наличии в организме седативных веществ (барбитураты, нейролептики, транквилизаторы). Следует отметить, что при падении парциального давления кислорода ниже 65 мм рт.ст. нарушается синтез медиаторов и начинаются изменения сознания.

Литература
Скворцова, В.И. Лечение и профилактика ишемического инсульта / Скорцова В.И., Стаховская Л.В. // Диагностика и терапия в клинике внутренних болезней: лекции для практикующих врачей, 10 Рос. нац. конгр. – М., 2004. - С. 142-160.
Кузнецов, Г.П. Клиническое значение селенодефецита у больных с сердечно-сосудистыми заболеваниями самарского региона и его коррекции препаратом «Cелена» / Г.П. Кузнецов, П.Л. Лебедев // Эксперим. и клинич. фармакология. - 2005. - Т.58, №5. – С. 26-28.
Демченко, И.Т. Кровоснабжение бодрствующего мозга / И.Т. Демченко. – Л.: Наука, 2007. – 174 с.
Физиология ЦНС: Учеб. пособие. – Ростов н/Д: Феникс, 2007. - 450 с.
Балуева, Т.В. К вопросу о центральной норадренергической регуляции мозгового кровообращения / Т.В. Балуева // Физиол. журн. СССР им. Сеченова. – 2006. - №7. - С. 913-917.
Анатомия человека: В 2 т. / Под ред. М.Р. Сапина. - М.: Медицина, 2007. - Т.2. - 479 с.

1. Контрольная_работа на тему Расчет стенок траншей стоек боковых стенок механической вентиляции для производственных помещений
2. Реферат на тему Frankenstien Essay Research Paper Your NameFrankensteinMary Shelley
3. Реферат Понятие, принципы и виды банковского кредита
4. Диплом Електроустаткування баштового крану
5. Курсовая Расчет пропеллерного смесителя
6. Реферат на тему The Job Of A Graphic Designer Essay
7. Биография Карломан король франков
8. Контрольная работа на тему Правовые отношения в сфере торговли
9. Реферат на тему Функции и сущность денег
10. Курсовая на тему Переработка ацидофильной простокваши