Реферат Рішення рівнянь із параметрами
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Зміст
Введення
Рішення рівнянь із параметрами
Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями
Висновок
Література
Введення
Актуальність даної теми визначається необхідністю вміти вирішувати такі рівняння з параметрами при складанні незалежного оцінювання знань.
Ціль даної роботи розповісти про рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.
Для досягнення поставленої мети необхідно вирішити наступні задачі:
дати визначення поняттям рівняння з параметрами;
показати принцип рішення даних рівнянь на загальних випадках;
показати рішення рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.
Для виконання поставленої мети були використані наступні методи: використання літератури різного типу, робота в групах на уроках алгебри й заняттях елективного курсу по математиці, участь проектної групи в міській конференції по даній темі в 2008 році.
Об'єктом дослідницької роботи було рішення рівнянь із параметрами, зв'язаних із властивостями вище представлених функцій.
Структура даної роботи містить у собі теорію, практичну частину, висновок, бібліографічний список.
Рішення рівнянь із параметрами
рівняння параметр функція логарифмічна
Задачі з параметрами відіграють важливу роль у формуванні логічного мислення й математичної культури в школярів, але їхнє рішення викликає в них значні утруднення. Це пов'язане з тим, що кожне рівняння з параметрами являє собою цілий клас звичайних рівнянь, для кожного з яких повинне бути отримане рішення. Такі задачі пропонуються на єдиному державному іспиті й на вступних іспитах у вузи.
Більшість посібників адресована абітурієнтам, однак починати знайомитися з подібними задачами потрібно набагато раніше - паралельно з відповідними розділами шкільної програми по математиці.
Якщо в рівнянні деякі коефіцієнти задані не конкретними числовими значеннями, а позначені буквами, то вони називаються параметрами, а рівняння параметричним.
Природно, такий невеликий клас задач багатьом не дозволяє засвоїти головне: параметр, будучи фіксованим, але невідомим числом, має як би двоїсту природу. По-перше, передбачувана популярність дозволяє «спілкуватися» з параметром як із числом, а по-друге, - ступінь волі спілкування обмежується його невідомістю. Так, ділення на вираження, що містить параметр, добування кореня парного ступеня з подібних виражень вимагають попередніх досліджень. Як правило, результати цих досліджень впливають і на рішення, і на відповідь.
Основне, що потрібно засвоїти при першому знайомстві з параметром, - це необхідність обережного, навіть, якщо хочете, делікатного обігу з фіксованим, але невідомим числом. Цьому, на нашу думку, багато в чому будуть сприяти наші приклади.
Необхідність акуратного обігу з параметром добре видна на тих прикладах, де заміна параметра числом робить задачу банальної. До таких задач, наприклад, ставляться: зрівняти два числа, вирішити лінійне або квадратне рівняння, нерівність і т.д.
Звичайно в рівняння буквами позначають невідомі.
Вирішити рівняння - значить:
знайти множину значень невідомому, задовольняючому цьому рівнянню. Іноді рівняння, крім букв, що позначають невідоме (X, Y,Z), містять інші букви, називані параметрами(a, b, c). Тоді ми маємо справу не з одним, а з нескінченною множиною рівнянь.
При одних значеннях параметрів рівняння не має корінь, при інших - має тільки один корінь, при третіх - два корені.
При рішенні таких рівнянь треба:
1) знайти множину всіх доступних значень параметрів;
2) перенести всі члени, що містять невідоме, у ліву частину рівняння, а всі члени, що не містять невідомого в праву;
3) привести подібні доданки;
4) вирішувати рівняння ax = b.
Можливо три випадки.
1. а
2. а = 0, b = 0. Рівняння приймає вид: 0х = 0, рішеннями є всі х
рішень не має.
Зробимо одне зауваження. Істотним етапом рішення рівнянь із параметрами є запис відповіді. Особливо це ставиться до тих прикладам, де рішення як би «гілкується» залежно від значень параметра. У подібних випадках складання відповіді - це збір раніше отриманих результатів. І тут дуже важливо не забути відбити у відповіді всі етапи рішення.
У тільки що розібраному прикладі запис відповіді практично повторює рішення. Проте, я вважаю за доцільне привести відповідь.
Відповідь:
х =
х - будь-яке число при а = 0, b = 0;
рішень немає при а = 0, b ? 0.
Рішення рівнянь із параметрами, зв'язаних із властивостями показовою, тригонометричною й логарифмічною функціями
1. Знайдемо значення параметра n, при яких рівняння 15·10 х – 20 = n – n · 10х + 1 не має коренів?
Рішення: перетворимо задане рівняння: 15·10 х – 20 = n – n · 10х + 1; 15·10 х + n· 10х + 1 = n + 20; 10 х ·(15 + 10n) = n + 20; 10 х =
Рівняння не буде мати рішень при
Вирішуючи зазначену нерівність методом інтервалів, маємо:
Відповідь:
2. Знайдемо всі значення параметра а, при яких рівняння lg2 (1 + х2) + (3а – 2)· lg(1 + х2) + а2 = 0 не має рішень.
Рішення: позначимо lg(1 + х2) = z, z > 0, тоді вихідне рівняння прийме вид: z2 + (3а – 2) · z + а2 = 0 Це рівняння – квадратне з дискримінантом, рівним (3а – 2)2 – 4а2 = 5а2 – 12а + 4. При дискримінанті менше 0, тобто при 5а2 – 12а + 4 < 0 виконується при 0,4 < а <2.
Відповідь: (0,4; 2).
3. Знайдемо найбільше ціле значення параметра а, при якому рівняння cos2x + asinx = 2a – 7 має рішення.
Рішення: перетворимо задане рівняння:
cos2x + asinx = 2a – 7; 1 – 2sin2х – asinx = 2a – 7; sin2х -
(sinх – 2) ·
Рішення рівняння (sinх – 2) ·
(sinх - 2) = 0; х належить порожній множині.
sinх -
Відповідь: 6.
4. Указати найбільше ціле значення параметра а, при якому корінь рівняння 4х2 - 2х + а = 0 належить інтервалу (- 1; 1).
Рішення: корінь заданого рівняння рівні: х1 =
х2 =
За умовою -1 <
- 1 <
Рішенням, що задовольняють зазначеним подвійним нерівностям, буде рішення подвійної нерівності: - 3 <
Нерівність - 3 <
Найбільше ціле значення параметра а із цього інтервалу, що одночасно належить і інтервалу (-1; 1), дорівнює 0.
Відповідь: 0.
5. При яких значеннях параметра а число корінь рівняння
Рішення: побудуємо ескіз графіка функції, в =
в = х2 - 8х + 7 з мінімумом умін рівним - 9 при х хв = 4, і коріннями х1 = 1 і х2 = 7;
суцільними лініями зображена частина параболи в =
х2 - 8х + 7 при 1 < х < 7.
(Ескіз лівої частини графіка функції при х < 0 можна одержати, відбивши ескіз правої частини графіка симетрично щодо осі 0у).
Проводячи горизонталі в = а, а
а | 0 | [1; 6] | 7 | 8 | 9 | |
к | 4 | 8 | 7 | 6 | 4 | 2 |
Таким чином, а = k при а = 7.
Відповідь: 7.
6. Указати значення параметра а, при якому рівняння
х4 + (1 – 2а)х2 + а2 – 4 = 0 має три різних корені.
Рішення: усяке біквадратне рівняння в загальному випадку має дві пари корінь, причому корінь однієї пари різняться тільки знаком. Три корені можливі у випадку, якщо рівняння має одну пару у вигляді нуля.
Корінь заданого рівняння рівні:
х =
Одна з пар корінь буде дорівнює 0, якщо (2а-1) =
4а2 – 4а +1 = 17 – 4а
Відповідь: 2.
Указати ціле значення параметра p, при якому рівняння
Рішення: р ≥ 0; 2 – р ≥ 0
0 ≤ р ≤ 2.
При р = 0 вихідне рівняння приймає вид – 2sinх = 2
При р = 1 вихідне рівняння приймає вид:
cosx-2sinx =
Максимальне значення різниці (cosx-2sinx) становить
sin (arctg(-2)) =
Отже, при р = 1 рівняння рішень не має.
При р = 2 вихідне рівняння приймає вид
Максимальне значення різниці
Відповідь: 2.
8. Визначити число натуральних n, при яких рівняння
Рішення: х ≠ 0, n ? 10.
Рівняння х2 – 8х – n(n – 10) = 0 не має рішення, якщо його дискримінант менше 0, тобто 16 + n(n-10) < 0
У знайденому інтервалі 5 натуральних чисел: 3, 4, 5, 6 і 7. З огляду на умову n ? 10, знаходимо, що загальне число натуральних n, при яких рівняння не має рішень, дорівнює 6.
Відповідь: 6.
9. Знайти найменше ціле значення параметра а, при якому рівняння
Рішення: за умовою 1 > sinx > 0
1 > cosx > 0
Отже, 2 < а < +
Зводячи обидві частини заданого рівняння у квадрат, маємо:
Уведемо змінну z =
z2 + 2z – а2 = 0. Воно має рішення при будь-якому а, оскільки його дискримінант
D = 1 + а2 позитивний при будь-якому а.
З огляду на, що 2 < а < +
Відповідь: 3.
Висновок
Під час створення даного проекту ми вдосконалили свої старі знання по темі «Рівняння з параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями » і якоюсь мірою одержали нові.
По завершенню роботи ми прийшли до висновку, що ця тема повинна вивчатися не тільки на елективних курсах і додаткових заняттях, але й у шкільній програмі, тому що вона формує логічне мислення й математичну культуру в школярів. Учням (студентам) знання по цій темі допоможуть здати незалежне оцінювання знань.
Література
1. П.І.Горнштейн, В.Б.Полонский, М.С.Якир Задачі з параметрами. – К., 2002.
2. Н.Ю.Глаголєва Задачі по математиці для вступників у вузи. – К., 1994р.
3. В.В.Лікоть Задачі з параметрами, - К., 2003р.
4. В.В.Ткачук Математика – абітурієнтові. – К., 1994р.
6. А.Г.Мордкович Алгебра й початок аналізу. – К., 1997р.
Размещено на Allbest.ru