Реферат Постановка лабораторной работы по курсу волоконно-оптические системы связи
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
1 Основные параметры и характеристики оптического волокна
Качество ОК проверяется с использованием общепринятых методов измерений. Требуется установить стандарты на параметры ОВ и соответствующие методы измерения. На европейском уровне за разработку таких стандартов отвечает Рабочая группа 28 Комитета по электронным компонентам CENELEC, на всемирном уровне - Технический комитет 86 Международной электротехнической комиссии.
1.1 Апертура волоконного световода
Апертура – это угол между оптической осью и одной из образующих светового конуса, попадающего в торец волоконного световода, при котором выполняется условие полного внутреннего отражения [3].
Учитывая, что в световоде границей раздела сред сердцевина – оболочка являются прозрачные стёкла, возможно, не только отражение оптического луча, но и проникновение его в оболочку. Для предотвращения перехода энергии в оболочку и излучения в окружающее пространство необходимо соблюдать условие полного внутреннего отражения и апертуру.
Известно, что при переходе из среды с большей плотностью в среду с меньшей плотностью, то есть при n1>n2, волна при определённом угле падения полностью отражается и не переходит в другую среду. Угол падения начиная с которого вся энергия отражается от границы раздела сред, при wp=в, называется углом полного внутреннего отражения:
, (1.1.1)
где m и e - соответственно магнитная и диэлектрическая проницаемости сердечника(m1,e1) и оболочки (m2,e2).При wp> преломлённый луч проходит вдоль границы раздела сердцевина - оболочка и не излучается в окружающее пространство.
При wp>в энергия, поступившая в сердечник, полностью отражается и распространяется по световоду. Чем больше угол падения волны, wp>в в пределах от в до 90 градусов, тем лучше условия распространения и тем быстрее волна придёт к приёмному концу. В этом случае вся энергия концентрируется в сердечнике световода и практически не излучается в окружающую среду. При падении луча под углом, меньшим угла полного отражения, wp<в , энергия проникает в оболочку, излучается во внешнее пространство и передача по световоду неэффективна.
Режим полного внутреннего отражения предопределяет условие подачи света на входной торец волоконного световода. Световод пропускает лишь свет, заключённый в пределах телесного угла а, величина которого обусловлена углом полного внутреннего отражения в. Этот телесный угол а характеризуется числовой апертурой:
NA=sin а=(n12 - n22)1/2, (1.1.2)
Между углами полного внутреннего отражения в и апертурным углом падения луча а имеется взаимосвязь. Чем больше угол в , тем меньше апертура волокна а . Следует стремится к тому, чтобы угол падения луча на границу сердечник - оболочка wp был больше угла полного внутреннего отражения в и находился в пределах от в до 90 градусов, а угол ввода луча в торец световода w укладывался и апертурный угол а (w<а).
В действующих технических условиях NA=0,2.
1.2 Критические длины волн и частоты
Световоды, как и волноводы, имеют частоту отсечки (критическую частоту f0), и по ним возможна передача лишь волн длиной меньше диаметра сердцевины световода ( <d ).
Суммируя значения поперечных состовляющих g сердцевины и оболочки, получаем:
g12+g22=k12 - k22=k0(n12 - n22), (1.2.1)
где k0=2 pi/=2 pi f/c; g12=k12 -b2 -поперечная составляющая волнового числа сердцевины;
k1=2 pi/ - волновое число сердцевины;
b - коэффициент распространения в световоде
Для определения критической частоты f0 надо принять g2=0, т.к. при значениях g2>0 поле концентрируется в сердцевине световода, а при g2=0 оно выходит из сердцевины и процесс распространения по световоду прекращается. Тогда:
g12=k0(n12 - n22), (1.2.2)
f0= pi(n12 - n22)1/2, (1.2.3)
Умножив числитель и знаменатель на радиус сердцевины r1,получим:
F0=g1 c r1/pi d(n12 - n22)1/2 , (1.2.4)
где d - диаметр сердцевины волокна
0=v1/f0=(n12 -n22)1/2, (1.2.5)
где g1=Pnm - параметр, характеризующий тип волны (моду)
Значения Pnm для различных типов волн 0 можно найти в специализированной литературе по ОК, например в [3].
Из формулы видно, что чем толще сердцевина световода и чем больше отличаются n1 и n2 , тем больше критическая длина волны и ниже критическая частота световода f0 .
Критические частоты f0 для различных типов волн Pnm и диаметра сердцевины d приведены в таблице 1.2.1 ( n1=1.51 и n2=1.50 ).
Таблица 1.2.1 - Критические частоты
|
Критическая частоста,10 13 Гц, для d ,мкм
Pnm | 8 | 10 | 40 | 50 | 100 |
2,405 | 18,4 | 14,7 | 3,32 | 2,66 | 1,33 |
3,83 | 26,8 | 21,1 | 5,29 | 4,23 | 2,12 |
При определённой длине волны наступает такой режим, когда q=0 градусов, волна падает на оболочку световода и отражается перпендикулярно. В световоде устанавливается режим стоячей волны, и энергия вдоль световода не распространяется. Это соответствует случаю критической длины волны 0 =d. Поэтому по ОВ возможна передача лишь волн длиной меньше диаметра световода ( <d ).
|
Рисунок 1.2.1 - Распространение волны в волоконном световоде для частот:
а - очень высоких; б - менее высоких; в - критических
1.3 Нормированная частота
Важнейшим обобщённым параметром волоконного световода, используемым для оценки его свойств, является нормированная частота V .Она получается суммированием аргументов цилиндрических функций [3] для сердцевины (g1 a) и оболочки (g2 a):
V=((g1 a)2 - (g2 a)2)1/2=((k12 - b2)+(b2 - k22))2=(k12- k22)1/2=2 pi a(n12 - n22)1/2/, (1.3.1)
где a - радиус сердцевины оболочки;
n1 - показатель преломления сердцевины;
n2 - то же, оболочки
В таблице 1.3.1 приведены значения нормированной частоты V при различных радиусах сердцевины волокна a, длины волн (n1=1,51). Из таблицы видно, что с увеличением радиуса сердцевины волокна величина V растёт, а с
увеличением уменьшается.
Таблица 1.3.1- Нормированная частота
Значения V, при a, мкм
, мкм | 4 | 5 | 25 | 50 |
n2
, мкм | 1,49 | 1,5 | 1,49 | 1,5 | 1,49 | 1,5 | 1,49 | 1,5 |
0,85 | 7,24 | 5,1 | 9,05 | 6,2 | 45,2 | 32,1 | 90,5 | 63,09 |
1,00 | 6,15 | 4,2 | 7,69 | 5,2 | 38,5 | 27,1 | 76,9 | 54,3 |
1,30 | 4,73 | 3,2 | 5,92 | 4,1 | 29,3 | 21,4 | 59,2 | 41,8 |
1,55 | 3,97 | 2,7 | 4,96 | 3,4 | 25,2 | 17,6 | 49,6 | 35,1 |
Выше показано, что при критической частоте g22=b2 - k22=0. Тогда b=0 для b/k=n2 ,где k=2 pi/.
Значение нормированной частоты отсечки соответствует точке пересечения каждой кривой с осью V. В этом случае b/k=n2 поле излучается из световода и процесс распространения прекращается. Из рисунка видно, что только одна одномодовая волна HE11 не имеет критической частоты. Для неё нормированная частота находится в пределах 0 <V < 2,405 или V=2 pi a(n12 - n22)1/2<2,405. Из формулы видно, что чем меньше разность dn=n1 - n2, тем при большем радиусе световода обеспечивается одномодовый режим. Так если n1=1,46, то при dn=0,01 радиус a=2,24, а при dn=0.003 получим a<4,09. То есть в последнем случае одномодовая передача реализуется при диаметре сердцевины d=8,2, что соответствует для длины волны 1,3 нм диаметру 10,7 мкм.
1.4 Число мод
Существующие конструкции ВС с диаметром сердцевины 50 мкм являются многомодовыми системами, и по ним распространяется большое число волн. В общем виде число мод в ВС определяется по формуле:
N=V2(1+2/n)/2, (1.4.1)
где n - показатель степени изменения профиля показателя преломления. Тогда для ступенчатого ВС n равно бесконечности:
N=V2/2, (1.4.2)
а для градиентного ВС (n=2):
N=V2/4, (1.4.3)
Из формулы видно, что чем больше диаметр сердцевины ВС и меньше длина волны, тем больше возникает мод. Причём в градиентных световодах число мод в два раза меньше, чем в ступенчатых.
1.5 Затухание
ОК характеризуются двумя важнейшими параметрами: затуханием и дисперсией.
Затухание a определяет длину регенерационных участков (расстояние между регенераторами) и для трактов оптических кабелей обусловлено собственными потерями в волоконных световодах ac и дополнительными потерями вызываемыми кабельными ak, обусловленные скруткой, а также изгибами сиетоводов при наложении покрытий и защитных покрытии в процессе изготовления оптического кабеля.
Собственные потери ВС состоят в первую очередь из потерь поглощения ap и потерь рассеяния ar
. Механизм потерь, возникающих при распространении по волоконному световоду электромагнитной энергии объясняется так: часть мощности, поступающей на вход световода рассеивается вследствие изменения направления распространения лучей на нерегулярностях и их высвечивания в окружающее пространство ( ap ), а другая часть мощности поглощается посторонними примесями, выделяясь в виде джоулева тепла ( ap +apr ). Такими примесями являются ионы металлов (никель, железо, кобальт и др.) и гидроксильные группы (ОН), приводящие к появлению резонансных всплесков затухания.
Потери на поглощение зависят от чистоты материала и при наличии посторонних примесей ( apr ) могут достигать значительной величины (ap+apr ).
Потери на рассеяние лимитируют предел минимально допустимых значений потерь в волоконных световодах. В результате a=ap+ar+apr+ak.
Затухание за счёт поглощения, дБ/км, связано с потерями на диэлектрическую поляризацию, линейно растёт с частотой, существенно зависит от свойств материала световода ( tg q ) и рассчитывается по формуле
ap=8.69 pi n tg q/, (1.5.1)
где n - показатель преломления;
tg q - тангенс угла диэлектрических потерь в световоде
Потери рассеяния обусловлены неоднородностями материала ВС, расстояния между которыми меньше длины волны, и тепловой флуктуацией показателя преломления. Величина потерь на рассеяние, дБ/км, называемое рэлеевским,определяется по формуле:
ap=Kp/2, (1.5.2)
Kp - коэффициент рассеяния, для кварца равный 0,8 (мкм4дБ)/км .
Потери на рэлеевское рассеяние определяют нижний предел потерь, присущих ВС. Этот предел различен для различных волн и с увеличением длины волны уменьшается.
На рисунке 1.5.1 представлены частотные зависимости коэффициента затухания световода. Из рисунка видно, что потери на поглощение растут линейно с увеличением частоты, а потери на рассеяние существенно быстрее - по закону f 4.
При >2 мкм начинаются проявляться потери на поглощение передаваемой мощности. Это явление проявляется с ростом длин волн и углублением в инфракрасную область оптического спектра. Величина этих потерь пропорциональна показательной функции и уменьшается с ростом частоты по закону (дБ/км) ank=Ce-h/, где C и k - постоянные коэффициенты (для кварца k =(0,7 - 0,9)*10-6 м, C =0,9).
На рисунке 1.5.2 приведены графики рэлеевского рассеяния 1, инфракрасного поглощения 2, коэффициента затухания 3 реальных световодов с учётом потерь на поглощение и за счёт примесей. Релеевское рассеяние ar ограничивает нижний предел потерь в левой части графика, а инфракрасное поглощение в правой. На графике явно видны три окна прозрачности световода. Наименьшее затухание ( a= 0.3 дБ/км ) имеется в третьем окне прозрачности при =1,55 мкм. Причём с увеличением длины волны затухание снижается.
|
|
Рисунок 1.5.2 - Затухание энергии в волоконном световоде при различных длинах волн
1.6 Дисперсия
Наряду с затуханием пропускная способность dF является важнейшим параметром ВОСП. Она определяет полосу пропускаемую световодом, и соответственно объём информации, который можно передавать по оптическому кабелю. Теоретически по волоконному световоду можно организовать огромное количество каналов для передачи информации на большие расстояния. Однако имеются значительные ограничения, обусловленные тем, что сигнал на вход приёмного устройства приходит искажённым, чем длиннее линия тем больше искажение. Данное явление носит название дисперсии и обусловлено различием времени распространения различных мод в световоде и наличием частотной зависимости показателя преломления.
Дисперсия - это рассеяние во времени спектральных или модовых составляющих оптического сигнала. Дисперсия приводит к увеличению длительности импульса при прохождении по ОК.
|
Рисунок 1.6.1 - Уширение импульсов за счёт дисперсии
Уширение импульса dt определяется как квадратичная разность длительности импульса импульсов на выходе и входе кабеля по формуле:
dt= (t вых 2- t вх 2)1/2, (1.6.1)
причём значения t вых и t вх берутся на уровне половины амплитуды импульсов. Связь между величиной уширения импульсов и полосой частот приближённо выражается выражением dF=1/dt. Так, если dt =20 нс/км, то dF =50 Мгц*км.
|
Рисунок 1.6.2 - Зависимость длины взаимодействия мод
Дисперсия не только ограничивает частотный диапазон использования световодов, но и снижает дальность передачи по ОК, так как чем длиннее линия, тем больше проявляется дисперсия и больше уширение импульса.
Пропускная способность ОК существенно зависит от типа ВС
(одномодовые, многомодовые - ступенчатые, градиентные ) и излучателей ( лазер, светодиод ).
Дисперсия возникает из - за не когерентности источников излучения и появления спектра, а также существования большого числа мод N. Дисперсия, возникающая из-за первой причины, называется хроматической.(частотной) и делится на материальную и волноводную.
Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны [n=y2()]. Волноводная дисперсия обусловлена процессами внутри моды и характеризуется зависимостью коэффициента распространения моды от длины волны [Y=y2()].
Дисперсия, возникающая из-за второй причины, называется модовой дисперсией и обусловлена наличием большого числа мод, время распространения которых различно [t=y3(N)]. В геометрической интерпретации соответствующие модам лучи идут под разными углами, проходят различный путь в сердцевине волокна и, следовательно, поступают на вход приёмника с различной задержкой.
Дисперсионные свойства тракта передачи зависят также от источника излучения. При лазерных источниках благодаря узкой полосе излучаемых частот дисперсия сказывается не существенно. В не когерентных источниках (светодиодах) полоса изучения значительно шире и дисперсия проявляется довольно значительно. Так, основной параметр, который характеризует уширение импульса ( ) для лазеров составляет 0,001 нс/км, а для светодиода - 0,1 нс/км.
Результирующие значение уширения импульсов за счёт модовой dtмод , материальной dtмат и волноводной tвв дисперсий определяется по формуле:
dt=(dtмод 2+(tмат +tвв)2)1/2, (1.6.2)
С учётом реального соотношения вкладов отдельных видов дисперсий в уширение импульсов для многомодовых волокон dt=dtмод, а для одномодовых волокон dt=dtмат+dtвв.
Величина уширения импульса в многомодовых волокнах за счёт модовой дисперсии, характеризуемая временем нарастания сигнала и определяемая как разность между самым большим и самым малым временем на расстоянии Lст может быть рассчитана по формулам:
dt=dn1(L *Lc)1/2c, (1.6.3)
- для ступенчатого световода,
dt=dn12(L *Lc)1/4c, (1.6.4)
- для градиентного световода,
где n1 - показатель преломления сердцевины;
L - длина линии;
c - скорость света;
Lc - длина связи мод, при которой наступает установившийся режим (5 - 7 км для ступенчатого волокна и 10 - 15 км - для градиентного).
Соответственно пропускная способность градиентного световода в 2 раза лучше, чем у ступенчатого, при одинаковом значении. Учитывая что, как правило, различие пропускной способности указанных световодов может достигать двух порядков.
При определении модовой дисперсии следует иметь в виду, что до определённой длины Lc межмодовой связи нет, а затем при L>Lc происходит процесс взаимного преобразования мод и наступает установившийся режим. Поэтому, вначале при L<Lc дисперсия увеличивается по линейному закону, а затем при L>Lc - по квадратичному [12].
Уширение импульсов при распространении по одномодовому волокну световоду волны длиной с учётом источников излучения может быть определено по формулам:
за счёт материальной дисперсии:
dtмат=(d 2/(c))(d2n/d2)L, (1.6.5)
за счёт волноводной дисперсии:
dtвв=()(2n12dl/c), (1.6.6)
где - относительная ширина спектра излучения источника. По данным формулам не всегда удаётся выполнить расчёт, так как неизвестен закон изменения n от f и . Поэтому для расчёта dtмат и dtвв часто пользуются экспериментальными данными и упрощёнными формулами:
dtмат=dL*B(), (1.6.7)
dtвв=d*L*M(), (1.6.8)
где - ширина спектральной линии источника излучения, равная 0,1...4,0 нм для лазера и 15...80 нм для светодиода;
L - длина линии, км;
M() и B() - удельные материальная и волноводные дисперсии соответственно
Удельные дисперсии выражаются в пикосекундах на километр длины световода и на метр ширины спектра. Величины и для кварцевого стекла приведены в [3].
Соответственно с увеличением длины волны dtмат уменьшается и проходит через нуль, а вв несколько растёт. Причём вблизи =1,35 мкм происходит их взаимная компенсация ( dtмат=-dtвв ) и результирующая дисперсия приближается к нулевому значению, поэтому волна 1,3 мкм получает широкое распространение в одномодовых системах передачи. Однако по затуханию предпочтительнее волна 1,55 мкм и для достижения минимума дисперсии в этом случае приходиться варировать профилем показателя преломления и диаметром сердцевины. При сложном профиле и трёхслойном световоде можно и на волне 1,55 мкм получить минимум дисперсионных искажении.
Отметим, что лучшими в этом плане являются одномодовые световоды. Из многомодовых световодов лучшие данные у градиентных. Наиболее резко дисперсия проявляется у ступенчатых световодов. Соответственно пропускная способность одномодовых световодов - тысячи, градиентных - сотни и ступенчатых - десятки мегагерц.
В ступенчатых световодах при многомодовой передаче доминирует модовая дисперсия 10...20 нс/км.
В одномодовых ступенчатых световодах отсутствует модовая дисперсия и в целом дисперсия сказывается существенно меньше. Здесь проявляются волноводная и материальная дисперсия. Но при определённых длинах волн (мкм ) происходит их взаимная компенсация ( мат=- вв) и результирующая дисперсия не превышает нескольких пикосекунд [11].
В градиентных световодах происходит выравнивание времни распространения различных мод и определяющей является материальная дисперсия, которая уменьшается с увеличением длины волны. По аьсолютной величине дисперсия колеблется в пределах 1...2 нс/км.
|
| ||||
Рисунок 1.6.3 - Зависимость пропускной Рисунок 1.6.4 - Влияние дисперсии на
способности световода от длины волны характеристики световода
|
| ||||
Рисунок 1.6.6 - Взаимосвязь дисперсии
Рисунок 1.6.5 - Частотная зависимость и пропускной способности от длины
затухания волны
Выводы по главе
Основными характеристиками ОВ являются:
1. Апертура и аппертурный угол.
По действующим техническим условиям NA=0,2.
Необходимо, что бы угол ввода луча в торец световода укладывался в апертурный угол а ( y<а). (а=arcsin NA)
2. Критические частоты.
По световодам возможна передача волн длиной меньше диаметра сердцевины световода.
В разрабатываемой лабораторной работе целесообразно использовать стандартные ОВ рассчитанные на длину волны 1,3 мкм. По ним возможна передача на длине волны 0,85 мкм, потери мощности при этом, по сравнению со стандартным ОВ на 0.85 мкм, составят около 20%.
3. Нормированная частота.
Нормированная частота V - обобщённый параметр ВС. Используется в основном в расчётах для обеспечения одномодового режима.
4. Число мод в световоде.
Существующие конструкции ВС с диаметром сердцевины 50 мкм являются многомодовыми системами. N=V2/4 - для градиентного ОВ. Для ОВ с диаметром сердцевины 50 мкм при прохождении волны с длиной 0,85 мкм число мод 1021, а для волны с длиной 1,3 мкм - 436.
5. Затухание.
В разрабатываемой лабораторной работе предполагается использовать ОВ из стекла типа CG - 1980 с затухание 3 дБ/км.
6. Дисперсия.
Значение дисперсии в ОС используемом в разрабатываемой лабораторной работе 1...2 нс/км.
2 Принципы спектрального уплотнения
Один из наиболее перспективных методов увеличения коэффициента использования пропускной способности ОВ - спектральное уплотнение. Спектральное уплотнение в первую очередь является альтернативой метода пространственного уплотнения. При этом достигается значительной альтернативой метода пространственного уплотнения. При этом достигается значительный экономический эффект за счёт сокращения стоимости используемого волокна в линейном кабеле. Кроме того, этот метод позволяет обеспечивать развитие сети без проведения дополнительных строительных работ. При этом расширяются возможности передачи сигналов с различными скоростями и типами модуляции - цифровой и аналоговой, что обеспечивает создание экономических многофункциональных систем связи.
Одним из важнейших преимуществ данного метода является наиболее полное использование сверхширокой спектральной полосы пропускания ОВ. В настоящее время осваивается диапазон 0,8...1,8 мкм. Если принять, что ширина спектрального канала составляет 10 нм, что уже достигнуто, то в указанном диапазоне можно разместить до 100 спектральных каналов. Например, в диапазоне волн 1,55 мкм при десяти спектральных каналах удалось создать ВОСП с информационной ёмкостью 1,37 Тбит/км*1/с, что эквивалентно организации по одному волокну 300000 телефонных каналов.
В ВОСП со спектральным разделением целесообразно использовать одномодовые ОВ с малым затуханием и лазерные источники с повышенной мощностью излучения. Для обеспечения большего энергетического потенциала оптические каналы следует располагать в одном окне прозрачности, где потери в ОВ минимальны. Такому требованию, например, для ООВ, выполненные на основе кварцевого стекла, отвечает диапазон длин волн 1,5...1,6 мкм.
Относительно высокие плотности оптической энергии в ООВ вызывают заметное проявление нелинейных эффектов. В ВОСП - СР наиболее заметным из них является эффект усиления в следствии комбинационного рассеяния (УВКР), который обусловлен резонансным взаимодействием оптических несущих с оптическими фотонами вещества ОВ. В результате эффекта УВКР в ООВ наблюдается взаимодействие между оптическими сигналами различных оптических каналов. Оно выражается в уменьшении мощности оптических несущих с большими длинами волн.
Рассмотрим случай параллельной передачи сигналов в ВОСП - СР. Изменение мощности оптического сигнала в ОВ вследствие УВКР в произвольном j-м оптическом канале описывается дифференциальным уравнением:
(2.1)
где Pjj- мощность j-й спектральной несущей в точке длины волны ОВ (на входе ОВ z =0); aj - коэффициент потерь излучения на j-й несущей; Pai -приращение мощности излучения в i-м канале вследствие УВКР от i-го источника; n -число оптических несущих; Pri -переданная в i-й канал доля излучения j-го источника.
В n-канальной ВОСП - СР распределение Pi(z) (i=1..n) мощности спектральных несущих при учёте УВКР может быть описано системой уравнении:
(2.2)
где q0-максимальное значение УВКР; k - коэффициент поляризации ОВ; -нормированное значение коэффициента УВКР для i -ой несущей в j -ом канале; =i/j Коэффициент может быть введён в уравнении на основе экспериментальных данных либо при использовании удобной аппроксимации функции профиля спектральной кривой УВКР распределением Лоренца:
(2.3)
где fij - разность частот i-го и j-го каналов;
fsi - частота сдвига максимума спектральной кривой УВКР относительно частоты i-го канала; fsi=440 1/см;
f - ширина профиля спектральной кривой УВКР по уровню 0,5 (в кварцевых ОВ f=240 1/см).
Количественную оценку изменения мощности оптических несущих, обусловленного эффектом УВКР, удобно характеризовать параметром относительного приращения мощности в каждом оптическом канале:
P=10lg(P’(z)/Pj(z)), (2.4)
где P’(z), Pj(z) - значение мощностей оптической несущей соответственно с учётом и без учёта влияния УВКР
Кривые зависимости p(z) вследствие УВКР в шестиканальной ВОСП - СР при Pi(0)=1мВт, полученные решением системы уравнений с учётом p. Hаблюдается увеличение мощности оптических несущих, характер изменения p(z) достаточно монотонный, переходящий в насыщение, абсолютное значение dp мало при Pi(0) =1мВт. При увеличении значение p возрастает. В 1-, 2-, 3-м каналах приращения носят отрицательный характер.
Перекрёстные помехи, вызванные эффектом УВКР в ВОСП - СР, можно характеризовать условным отношением сигнал - шум (С - Ш):
С -Ш=10 lg(P10(z)/(P10(z) - P1(z))), (2.5)
где P10(z) - мощность оптического сигнала в ОВ на первой несущей при отсутствии УВКР. Kривые зависимости отношения С - Ш для двухканальной ВОСП - СР протяжённостью 50 км от мощности подводимого излучения Pi(0)=P2(0) при 1=1.55 мкм, a1=a2=0,2 дБ/км и различных значениях мощности подводимого излучения Pi(0).
Анализируя кривые зависимости, можно отметить, что заметное (более 20 дБ) подавление УВКР в ВОСП - СР может быть обеспечено даже при сравнительно больших (несколько милливатт) мощностях излучения в ОВ, если разнос спектральных несущих не превышает 10 нм. Это указывает на целесообразность использования в ВОСП - СР устройств спектрального разделения, а также излучателей с высокой разрешающей способностью подлине волны. Данное условие согласуется с рекомендациями по построению ВОСП - СР с минимальным разносом несущих, основанным на оценке энергетического потенциала и широкополосности таких систем.
В целом можно отметить, что:
в одномодовых ВОСП - СР влияние УВКР усиливается по мере возрастания длины ОВ, мощности излучения, числа несущих и их спектрального разноса. Если разнос несущих очень велик (более 100 нм) и превышает эффективную ширину профиля спектральной кривой УВКР, уровень перекрёстных помех в ВОСП - СР падает;
в многоканальных ВОСП - СР мощность передаваемого непрерывного сигнала в области коротковолновых несущих уменьшается, а в области длинноволновых несущих увеличивается. Практически с учётом АМ несущих эффекты УВКР обуславливают флуктуации амплитуды передаваемого сигнала, преимущественные знаки которых различаются в коротко- и длинноволновой областях рабочего спектра ВОСП - СР;
изменение отношения С - Ш, обусловленное УВКР, наиболее заметно на начальном участке ОВ и практически не зависит от уровня мощности передаваемых сигналов. При длине ОВ более 15 км влияние эффектов УВКР стабилизируется;
наиболее эффективным средством подавления перекрёстных помех и флуктуации сигналов, обусловленных УВКР, является уменьшение спектрального разноса несущих в ВОСП - СР (10...15 нм). Отсюда следует целесообразность разработки излучателей и устройств спектрального разделения с высокой (около 0,1 нм ) избирательной способностью по длинам волн.
Рассмотрим второй случай, когда передача оптических сигналов в ВОСП - СР осуществляется во встречном направлении. Процесс распространения и взаимодействия двух встречно распространяющихся оптических несущих можно описать в виде системы нелинейных дифференциальных уравнении:
, (2.6)
где L - длина ООВ;
P1 и P2 - мощности встречно распространяющихся оптически несущих в точке z ООВ
Начальные условия при встречном распространении оптических несущих имеют вид:
P1(z=0)=P1(0),
(2.7)
P2(z=L)=P2(L),
где P1(0) и P2(0) - мощности оптических несущих на противоположных входах ООВ
В качестве исходного (нулевого ) приближения принимается состояние процесса распространения оптических несущих, когда взаимодействие между ними отсутствует, а значения их мощности убывают по экспоненциальному закону:
, (2.8)
Проведя математические преобразования, получим функции P1(z), P2(L-z)в виде:
, (2.9)
Расчёты проводились для одного регенерационного участка при встречном распространении оптических несущих для одноволоконной ВОСП - СР со следующими параметрами: a1=a2=0,2 дБ/км; A=0,000308 м2; k=2;
q0=60.32*10-14мВт; 1=1.5 мкм; 2=1.6 мкм ; L=50 км; z=25 км; p=0,05;0,20;0,26;0,80 Дб, при мощности оптического излучения 1;10;20;50 мВт соответственно. При z=L и при z=0 p=0,1;0,7;1,0;2,0 Дб.
Для макета лабораторной работы:
K=2; q0=6,32 10 –14мВт; =0,85мкм; 2=1,3 мкм; 1 =0,24 Дб/км; 2=0,20 Дб/км; L=0,006 км; А=0,308 10 –4 м2; =0,85/1,30=0,654.
при z=L/2=0,006/2=0,003:
, это значение пренебрежимо мало.
При z=L:
При z=0:
Анализ полученных результатов показывает, что взаимодействие между оптическими несущими увеличивается при увеличении мощностей на входах ООВ и уменьшении коэффициента затухания. К увеличению взаимодействия между оптическими несущими приводят, кроме того, такие факторы, как уменьшение диаметра сердцевины ООВ, применение ООВ с более высоким, чем использовался в расчётах, коэффициентом УВКР, а так же ООВ, которые сохраняют поляризацию.
Величина взаимодействия, обусловленного эффектом УВКР, между встречно распространяющимися оптическими несущими в большей мере зависит от длины ООВ. Так, при увеличении длины ООВ до определённого расстояния увеличивается время и, следовательно, интенсивность взаимодействия оптических несущих. Однако при дальнейшем росте длины ООВ dp практически не нарастает, так как оптические несущие испытывают большее затухание.
Приведённые результаты соответствуют результатам взаимодействия оптических несущих, распространяющихся по ООВ в одном направлении. Однако характер изменения величины спектрального приращения мощности dp несколько различен. При однонаправленном распространении оптических несущих происходит до определённой длины, а в дальнейшем плотность оптической энергии становится малой и взаимодействия практически не наблюдается. В случае распространения встречных оптических несущих величина dp возрастает по мере распространения несущей по волокну. Причём наибольшее изменение величины относительного приращения мощности для каждой оптической несущей будет перед фотоприёмным устройством [14].
Выводы по главе
Влияние УВКР усиливается по мере возрастания длины ОВ, мощности излучения, числа несущих и их спектрального разноса. Но если разнос несущих очень велик (более 100 нм) и превышает эффективную ширину профиля спектральной кривой УВКР, уровень перекрёстных помех в ВОСП-СР падает. В разрабатываемой лабораторной работе спектральный разнос несущих 450 нм, более того несущие находятся в разных окнах прозрачности, поэтому эффектом УВКР можно пренебречь.