Реферат Метод наименьших квадратов
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Метод наименьших квадратов Оценка параметров уравнения А0 , А1, А2 осуществляется методом наименьших квадратов (МНК). В основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметра модели, при котором минимизируется сумма квадратов отклонений фактических значений результативного признака от теоретических, полученных по уравнению регрессии.
S=∑ (YI — Y(X))2→MIN .2)
Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет след. вид:
N*A0 + A1*∑X = ∑Y
A0*∑X+A1*∑X2=∑X*Y (2.3)
N- объём исследуемой совокупности.
В уравнении регрессии параметр А0 показывает усреднённое влияние на результативный признак неучтённых факторов.
Параметр А1 (А2) — коэффициент регрессии, показывает на сколько изменяется в среднем значение результативного признака при изменении факторного на единицу в его собственном измерении.
Если связь между признаками криволинейная и описывается уравнением параболы, то система нормальных уравнений будет иметь следующий вид:
N*A0 + A1*∑X + A2*∑X2 = ∑Y,
A0*∑X+A1*∑X2+A2*∑X3=∑XYA0*∑X2+A1*∑X3+A2*∑X4= ∑X2Y (2.4)
Оценка обратной зависимости между Х и У осуществляется на основе уравнения гиперболы. Тогда система нормальных уравнений выглядит так: N*A0 + A1*∑1/X = ∑X
A0*∑1/X + A1∑1/X2 = ∑Y/X