Реферат

Реферат Методы поляризации света

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 29.1.2025







Содержание







Стр.













 1

Поляризация света и связанные с ней явления…………………...



 

Поляризация света……………………………………………………...

2

 

Хроматическая поляризация света……………………………………



 

Двойное лучепреломление…………………………………………….









 2

Поляризационные устройства и приборы………………………….

7

 

Простейшие поляризационные устройства…………………………..



 

Приборы для поляризационно-оптических исследований…………..









 3

применение метода

11









Список использованных источников………………………………

12


1  Поляризация света и связанные с ней явления




Поляризация света
Поляризация света – одно из фундаментальных свойств оптического излучения, состоящее в неравноправии различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны). Поляризацией света называются также геометрические характеристики, которые отражают особенности этого неравноправия [1-3].

  Поперечность световых волн выражается в том, что колеблющиеся в них векторы напряжённости электрического поля Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Векторы Е и Н выделяют определённые направления в пространстве, занятом волной. Кроме того, Е и Н почти всегда (об исключениях см. ниже) взаимно перпендикулярны, поэтому для полного описания состояния поляризации света требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

Световая волна, испускаемая отдельно взятым элементарным излучателем (атом, молекула) в единичном акте излучения, всегда поляризована полностью. Но макроскопические источники света состоят из огромного числа элементарных излучателей, что приводит к хаотическому распределению ориентаций вектора E в пространстве. Подобное излучение называется неполяризованным (естественным) светом,  а вектор Е, как и всякий вектор, всегда можно представить в виде суммы его проекций на 2 взаимно перпендикулярных направления (выбираемых в плоскости, поперечной направлению распространения света). В естественном свете разность фаз между такими проекциями непрерывно и хаотически меняется. В полностью поляризованном свете эта разность фаз строго постоянна, т. е. взаимно перпендикулярные компоненты Е когерентны. Создав определённые условия на пути распространения естественного света, можно выделить из него поляризованную (полностью или частично) составляющую. Кроме того, полная или частичная поляризация света возникает в ряде природных процессов испускания света и его взаимодействия с веществом.

Полную поляризацию монохроматического света характеризуют проекцией траектории конца вектора Е в каждой точке луча на плоскость, перпендикулярную лучу (рисунок 1.1). В общем случае т. н. эллиптической поляризации такая проекция – эллипс, что связано с постоянством частоты колебаний и разности фаз между взаимно перпендикулярными компонентами Е
в монохроматической волне. Для полного описания эллиптической поляризации света необходимо знать направление вращения Е по эллипсу (правое или левое), ориентацию осей эллипса и его эксцентриситет (рис. 2).




Рисунок 1.1 – Колебания проекций вектора Е световой волны в системе координат х, у, z,

z – направление распространения волны (а); б и в – мгновенные изображения колебаний

и соответствующей огибающей концов вектора Е в разных точках волны для случая,

когда колебания Ex на четверть периода (p) опережают колебания Ey


Рисунок 1.2 – Возможные направления вращения вектора E и направления осей

эллипса поляризации
Наибольший интерес представляют предельные случаи эллиптической поляризации света – линейная поляризация (разность фаз Dj=±np, где n – целое число, эллипс вырождается в отрезок прямой – рисунки 1.2а и 1.2д) и круговая (циркулярная) поляризация (Dj=±(2n+1)p/2, эллипс поляризации превращается в окружность, рисунок 1.2в). В сложных неоднородных световых волнах (например, в металлах или при полном внутреннем отражении, рис) мгновенные направления векторов Е и Н уже не связаны простым соотношением ортогональности, и для полного описания поляризации света в таких волнах требуется знание поведения каждого из этих векторов по отдельности (рисунки 1.2б, 1.2 г и 1.2е).

Если фазовое соотношение между компонентами Еx и Еу меняется за времена, много меньшие времени измерения поляризации света, нельзя говорить о полной поляризации света. Однако может случиться, что в составляющих пучок света монохроматических волнах Е меняется не совершенно хаотически, а между взаимно перпендикулярными компонентами Е существует некоторый преимущественный фазовый сдвиг (фазовая корреляция), сохраняющийся в течение достаточно длительного времени. Физически это означает, что в поле световой волны одна из компонент вектора Е всегда больше другой (Еx¹Еу). Степень подобной фазовой корреляции в таком (частично поляризованном) свете описывают степенью поляризации света р:





(1.1)



где индексы 1 и 2 относятся к интенсивностям I света двух ортогональных поляризаций. Очевидно, что р может меняться от 0 до 100%, отражая все количественные градации состояния поляризации света. Однако следует иметь в виду, что свет, проявляющийся в одних опытах как неполяризованный, в других может оказаться полностью поляризованным – с поляризацией, меняющейся во времени, по сечению пучка или по спектру.

К частичной или полной поляризации света может приводить множество физических процессов. Это, например, отражение и преломление света, при которых поляризация света обусловлена различием оптических характеристик границы раздела двух сред для компонент светового пучка, поляризованных параллельно и перпендикулярно плоскости падения. Свет может поляризоваться при прохождении через среды, обладающие естественной или вызванной внешними воздействиями (индуцированной) оптической анизотропией (вследствие неодинаковости коэффициентов поглощения света при различных состояниях поляризации света, например при правой и левой круговых поляризациях - т. н. круговой дихроизм, являющийся частным случаем плеохроизма; вследствие различия преломления показателей среды для лучей различных линейных поляризаций - войного лучепреломления. Очень часто полностью поляризовано излучение лазеров; одной из основных причин поляризации света в лазерах является специфический характер вынужденного излучения, при котором поляризации испускаемого фотона и фотона, вызвавшего акт испускания, абсолютно тождественны; таким образом, при лавинообразном умножении числа испускаемых фотонов в лазерном импульсе их поляризации могут быть совершенно одинаковыми. Поляризация возникает при резонансном излучении в парах, жидкостях и твёрдых телах. Поляризация при рассеянии света столь характерна, что её исследование - один из основных способов изучения как особенностей и условий самого рассеяния, так и свойств рассеивающих центров, в частности их структуры и взаимодействия между собой. В определённых условиях сильно поляризовано люминесцентное свечение, особенно при возбуждении его поляризованным светом. Поляризация весьма чувствительна к величине напряжённости и ориентации электрических и магнитных полей; в сильных полях компоненты, на которые расщепляются спектральные линии испускания, поглощения и люминесценции газообразных и конденсированных систем, оказываются поляризованными.

Хроматическая поляризация света

Одним из эффектов интерференции поляризованных лучей света является хроматическая поляризация света, связанная с зависимостью всех интерференционных явлений от длины волны излучения. Она проявляется, в частности, в окрашивании интерференционной картины, возникающей при интерференции белого света.

Обычная схема получения картины хроматической поляризации света в параллельных лучах приведена на рисунке 1.3.


Рисунок 1.3 - Схема наблюдения интерференции поляризованных лучей

в параллельном световом потоке (N1 - поляризатор, N2 - анализатор; К - пластинка

толщиной l, вырезанная из одноосного двулучепреломляющего кристалла параллельно

его оптической оси)

Схема для наблюдения хроматической поляризации света в сходящихся лучах показана на рисунке 1.4 Лучи разного наклона проходят в К разные пути, приобретая разности хода (различные для обыкновенного и необыкновенного лучей). По выходе из анализатора они интерферируют, давая характерные интерференционные картины, показанные на рисунке 1.5.



Рисунок 1.4 - Схема наблюдения хроматической поляризации в сходящихся лучах

(N1 - поляризатор, N2 - анализатор; К - пластинка толщиной l, вырезанная из одноосного двулучепреломляющего кристалла параллельно его оптической оси; L1, L2 - линзы)









а



б

Рисунок 1.5 - Интерференционные картины хроматической поляризации

в сходящихся лучах, когда оптические оси анализатора и поляризатора

скрещены (N1^N2, см. рисунок 1.4). Cрез кристаллической пластинки К

перпендикулярен (а) и параллелен (б) её оптической оси.
Двойное лучепреломление

 Двойное лучепреломление - это явление расщепления пучка света в анизотропной среде на два слагающих, распространяющихся с разными скоростями и поляризованных в двух взаимно перпендикулярных плоскостях. Двойное лучепреломление впервые обнаружено и описано профессором Копенгагенского университета Э. Бартолином в 1669 г. в кристалле исландского шпата. Если световой пучок падает перпендикулярно к поверхности кристалла, то он распадается на два пучка, один из которых продолжает путь без преломления, как и в изотропной среде, другой же отклоняется в сторону, нарушая обычный закон преломления света (рисунок 1.6). Соответственно этому лучи первого пучка называются обыкновенными, второго - необыкновенными. Угол, образуемый обыкновенным и необыкновенным лучами, называется углом двойного лучепреломления. Если в случае перпендикулярного падения пучка поворачивать кристалл вокруг пучка, то след обыкновенного луча остаётся на месте, в центре, а след необыкновенного луча вращается по кругу. Двойное лучепреломление можно наблюдать и при наклонном падении пучка света на поверхность кристалла. В исландском шпате и некоторых др. кристаллах существует только одно направление, вдоль которого не происходит двойное лучепреломление. Оно называется оптической осью кристалла, а такие кристаллы - одноосными.

 



Рисунок 1.6 - Двойное лучепреломление в одноосном кристалле

при перпендикулярном падении пучка света на переднюю грань кристалла
Направление колебаний электрического вектора у необыкновенного луча лежит в плоскости главного сечения (проходящей через оптическую ось и световой луч), которая является плоскостью поляризации. Нарушение законов преломления в необыкновенном луче связано с тем, что скорость распространения необыкновенной волны, а, следовательно, и её показатель преломления nе зависят от направления. Для обыкновенной волны, поляризованной в плоскости, перпендикулярной главному сечению, показатель преломления nо одинаков для всех направлений. Если из точки О (рисунок 1.6) откладывать векторы, длины которых равны значениям nе и nо в различных направлениях, то геометрические места концов этих векторов образуют сферу для обыкновенной волны и эллипсоид для необыкновенной (поверхности показателей преломления).

  В прозрачных кристаллах интенсивности обыкновенного и необыкновенного лучей практически одинаковы, если падающий свет был естественным. Выделив диафрагмой один из лучей, получившихся при двойном лучепреломлении, и пропустив его через второй кристалл, можно снова получить двойное лучепреломление. Однако интенсивности обыкновенного и необыкновенного лучей в этом случае будут различны, т. к. падающий луч поляризован. Отношение интенсивностей зависит от взаимной ориентации кристаллов - от угла a, образуемого плоскостями главных сечений того и другого кристалла (плоскости, проходящие через оптическую ось и световой луч). Если j=0° или 180°, то остаётся только обыкновенный луч. При a=90°, наоборот, остаётся только луч необыкновенный. При a=45° интенсивность обоих лучей одинакова. В общем случае кристалл может иметь две оптических оси, т. е. два направления, вдоль которых двойное лучепреломление отсутствует. В двуосных кристаллах оба луча, появляющиеся при двойном лучепреломлении, ведут себя, как необыкновенные.

Оптическая активность - способность среды вызывать вращение плоскости поляризации проходящего через неё света. Одним из первых исследований, приведших к обнаружению оптической активности, было исследование зависимость интенсивности линейно поляризованного света после его прохождения через анализатор от угла b между плоскостями поляризации падающего света и анализатора, проведенное Э. Л. Малюсом. В 1810 г. им было установлена зависимость соотношения между интенсивностями падающего на анализатор I0 и выходящего из него I света и углом b, получившее название закона Малюса:



I=I0cos2b.

(1.2)



Развитие теории оптической активности тесно связано с изучением её дисперсии - зависимости a от l. Ещё Био установил, что в исследованных им случаях a тем меньше, чем больше l (j ~ l–2). Такая дисперсия характерна для т. н. нормальной оптической активности - вдали от длин волн l0, на которых в оптически активном веществе происходит резонансное поглощение. Дальнейшие исследования показали, что дляобъяснения оптической активности существен учёт изменения поля световой волны на расстояниях порядка размеров а молекулы (при описании многих других оптических явлений таким изменением можно пренебречь).

Оптически активные вещества - это среды, обладающие естественной оптической активностью. Оптически активные вещества подразделяются на два типа. Относящиеся к первому из них оптически активны в любом агрегатном состоянии (сахара, камфора, винная кислота), ко второму - активны только в кристаллической фазе (кварц, киноварь). У веществ первого типа оптическая активность обусловлена асимметричным строением их молекул, у веществ второго типа - специфической ориентацией молекул (ионов) в элементарных ячейках кристалла (асимметрией поля сил, связывающих частицы в кристаллической решётке). Кристаллы оптически активных веществ всегда существуют в двух формах - правой и левой; при этом решётка правого кристалла зеркально симметрична решётке левого и не может быть пространственно совмещена с нею (т. н. энантиоморфные формы). Оптической активности правой и левой форм оптически активные вещества второго типа имеют разные знаки (и равны по абсолютной величине при одинаковых внешних условиях), поэтому их называется оптическими антиподами (иногда так называют и кристаллы оптически активных веществ первого типа).


2  Поляризационные устройства и приборы




Простейшие поляризационные устройства

 

В простейших поляризационных устройствах - поляризаторах для получения полностью или частично поляризованного света используется одно из трёх физических явлений: поляризация при отражении света или преломлении света на границе раздела двух прозрачных сред; линейный дихроизм; двойное лучепреломление.

Свет, отражённый от поверхности, разделяющей две среды с разными показателями преломления n, всегда частично поляризован. Если же луч света падает на границу раздела под углом, тангенс которого равен отношению абсолютных показателей преломления второй и первой сред (их относительный показатель преломления n=n2/
n
1), то отражённый луч поляризован полностью. Недостатки отражательных поляризаторов - малость коэффициента отражения и сильная зависимость степени поляризации р от угла падения и длины светова. Преломленный луч также частично поляризован, причём его степени поляризации монотонно возрастает с увеличением угла падения. Пропуская свет последовательно через несколько прозрачных плоскопараллельных пластин, можно достичь того, что степень прошедшего света будет значительна.

  Среды, обладающие оптической анизотропией, по-разному поглощают лучи различных поляризаций. Если толщина пластинки, вырезанной из анизотропного кристалла (с полосами поглощения в нужной области спектра) параллельно его оптической оси, достаточна, чтобы один из лучей поглотился практически нацело, то прошедший через пластинку свет будет полностью поляризован. Такие поляризаторы называют дихроичными. К ним относятся и поляроиды, поглощающее вещество которых может быть как кристаллическим, так и некристаллическим. Важные преимущества поляроидов - компактность, большие рабочие апертуры (максимальные углы раствора сходящегося или расходящегося падающего пучка, при которых прошедший свет ещё поляризован полностью) и практически полное отсутствие ограничений в размере.

Пластинки из оптически анизотропных материалов, вносящие сдвиг фазы между двумя взаимно перпендикулярными компонентами электрического вектора Е проходящего через них излучения (соответствующими двум линейным поляризациям), называют фазовыми, или волновыми, пластинками и предназначены для изменения состояния поляризации излучения. Так, циркулярные или эллиптическимие поляризаторы обычно представляют собой совокупность линейного поляризатора и фазовой пластинки. Для получения света, поляризованного по кругу (циркулярно), применяют фазовые пластинки, вносящую сдвиг фазы в 90° (пластинка четверть длины волны). Двулучепреломляющие фазовые пластинки изготовляют как из материалов с естественной оптической анизотропией (например, кристаллов), так и из веществ, анизотропия которых индуцируется приложенным извне воздействием - электрическим полем, механическим напряжением и пр. Применяются также отражательные фазовые пластинки, например ромб Френеля. Принцип их действия основан на изменении состояния поляризации света при его полном внутреннем отражении. Преимуществом отражательных фазовых пластинок перед двупреломляющими является почти полное отсутствие зависимости фазового сдвига от длины волны. В частности, в ромбе Френеля  при близком к нормальному падении луча света, поляризованного линейно под углом 45° к плоскости падения, линейные составляющие луча, поляризованные параллельно и перпендикулярно этой плоскости, при каждом из двух полных внутренних отражений приобретают разность фаз в одну восьмую периода световой волны. Итоговая разность фаз в одну четвертую периода (90°) даёт луч, поляризованный по кругу.

Поляризаторы, действие которых основано на явлении двойного лучепреломления - поляризационные призмы - рассмотрены в разделе 2.2. Их апертуры меньше, чем у поляроидов, а габариты, вес и стоимость больше; однако они всё же незаменимы в ультрафиолетовой области спектра и при работе с мощными потоками оптического излучения.

Все поляризаторы (линейные, циркулярные, эллиптические) могут использоваться не и как поляризаторы, и как анализаторы. Анализ эллиптически поляризованного света производят с помощью компенсаторов разности хода, простейшим из которых является четвертьволновая фазовая пластинка. Часто проблему деполяризации частично поляризованного излучения обычно решают не истинной деполяризацией (это сложная задача), а сводят её к созданию тонкой пространственной, спектральной или временной поляризационной структуры светового пучка.
Приборы для поляризационно-оптических исследований

В настоящее время существует множество приборов для поляризационно-оптических исследований, которые отличает чрезвычайное разнообразие как сфер применения, так и конструктивного оформления и принципов действия. Их используют для фотометрических и пирометрических измерений, кристаллооптических исследований, изучения механических напряжений в конструкциях, в микроскопии, в поляриметрии и сахариметрии, в скоростной фото- и киносъёмке, геодезических устройствах, в системах оптической локации и оптической связи, в схемах управления лазеров, для физических исследований электронной структуры атомов, молекул и твёрдых тел и др. Описанию многих из этих приборов посвящены отдельные работы. Мы дадим лишь краткий обзор некоторых основных классов подобных приборов.

  Элементом большинства поляризационных приборов является схема, состоящая из последовательно расположенных на одной оси линейного поляризатора и анализатора. Если их плоскости поляризации взаимно перпендикулярны, схема не пропускает света (установка на гашение). Изменение угла между этими плоскостями приводит к изменению интенсивности проходящего через систему света по Малюса закону (пропорционально квадрату косинуса угла). Особое удобство этой схемы для сравнения и измерения интенсивностей световых потоков обусловило её преимущественное применение в фотометрических поляризационных приборов - фотометрах и спектрофотометрах (как с визуальной, так и с фотоэлектрической регистрацией). Поляризационные приборы представляют собой основные элементы оборудования для кристаллооптических и иных исследований сред, обладающих оптической анизотропией - естественной или наведённой. При таких исследованиях широко применяются поляризационные микроскопы, позволяющие на основе визуальных наблюдений делать выводы о характере и величине оптической анизотропии вещества. Для прецизионного анализа оптической анизотропии и её зависимости от длины волны излучения применяются автоматические приборы с фотоэлектрической регистрацией. Практически всегда при количественном анализе анизотропии требуется сопоставить оптические свойства среды для двух ортогональных поляризаций - линейных, если измеряется линейный дихроизм или линейное двулучепреломление, и круговых при измерении дихроизма или вращения плоскости поляризации. Это сопоставление в электронной схеме прибора производится на достаточно высокой частоте, удобной для усиления сигнала и подавления шумов. Поэтому поляризационные приборы такого назначения часто включают поляризационный модулятор.

Поляризационные приборы служат для обнаружения и количественного определения степени поляризации частично поляризованного света. Простейшими из них являются полярископы — двулучепреломляющие пластинки, в которых используется интерференция света в сходящихся поляризованных лучах (хроматическая поляризация). Типичный полярископ - полярископ Савара, который состоит из двух склеенных пластинок кристаллического кварца одинаковой толщины d, вырезанных так, что их оптические оси составляют с осью полярископа углы в 45° (пластинка Савара), и жестко связанного с ней анализатора, плоскость поляризации которого направлена под углом 45° к главным сечениям этой пластинки.

Чрезвычайно существенную роль в химических и биофизических исследованиях играет обширный класс приборов, служащий для измерения вращения плоскости поляризации в средах с естественной или наведённой магнитным полем оптической активностью (поляриметры) и дисперсии этого вращения (спектрополяриметры). Относительно простыми, но практически очень важными являются сахариметры - приборы для измерения содержания сахаров и некоторых других оптически активных веществ в растворах.

Самые точные из полярископов позволяют обнаружить примесь поляризованного света к естественному, составляющую доли процента.

В качестве примера рассмотрим один из простейших круговых поляриметров - поляриметр СМ-3, который предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах (его оптическая схема показана на рисунке 2.9).


Рисунок 2.9 - Опическая схема поляриметра СМ-3 (пояснения в тексте)
Достаточно просто устроен полярископ-поляриметр ПКС-56 (рисунок 2.10). Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), четвертьволновой пластинки 5, анализатора 6 и светофильтра 7 (максимум пропускания при 0.54 мкм). Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.

Рисунок 2.10 - Опическая схема полярископа-поляриметра ПКС-56

(пояснения в тексте)
Определив Db, можно определить no-ne из соотношения





(1.4)



где l — толщина образца. При l=10 мм погрешность измерения none составляет ±3×107. С увеличением l погрешность уменьшается.

Несколько более сложную схему имеет малогабаритный поляриметр ИГ-86 (рисунок 2.11), предназначенный для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода как методом сопоставления цветов, так и компенсационным методом.

Рисунок 2.11 - Опическая схема малогабаритныого поляриметра ИГ-86

(пояснения в тексте)
Схема типичного фотоэлектрического модуляционного поляриметра, позволяющего измерять меняющуюся во времени разность фаз о- и е-лучей, показана на рисунке 2.12.

Рисунок 2.12 - Опическая схема фотоэлектрическиого модуляционного поляриметра

(пояснения в тексте)
3. Применение метода.

          Поляриметрия широко применяется для исследования оптически активных веществ. Методами поляриметрии анализируются атмосфера и океаны, различные объекты окружающей среды, промышленные изделия и продукты переработки предприятий. Эффективно эти методы используется в электронной промышленности, в медицине, биологии, криминалистике и т.д. Большое значение они имеют в аналитическом контроле окружающей среды и решении экологических проблем.  Методы поляриметрии методы рассматриваются в ряде предметов специальности “Физика”, например, в курсах “Оптические измерения” и “Строение и методы исследования вещества”.

В то же время имеется ряд особенностей исследования  оптической активности химических соединений, что связано с неаддитивностью явления, не позволяющей вести расчёты на основе простой схемы, как, например, в случае молекулярной рефракции. Перспективными здесь являются методы поляриметрии, основанные на измерении поляризационных свойств прошедшего через тестируемое вещество квазимонохроматического излучения различных спектральных диапазонов.

В данной дипломной работе рассмотрены основные характеристики поляризованного излучения, методы поляриметрии и типовое оборудование. Разработаны методические указания к выполнению лабораторной работы “Поляриметрическое определение концентрации вещества в растворе. Проверка закона Био при разных длинах волн”.

С целью расширения функциональных возможностей промышленного поляриметра СМ-3 проведена его модификация, заключавшаяся в замене исходной системы освещения блоком, позволяющим проводить изменения как в белом свете, так и в синем, зеленом, желтом и красном диапазонах спектра.

Список использованных источников




1        Ландсберг Г. С. Оптика.- М.: Наука, 1976.- 928 с.

2        Шерклифф У. Поляризованный свет.- М.: Мир, 1965. 322 с.

3        Джерасси К. Дисперсия оптического вращения. М.: Мир, 1962.- 366 с.

4        Волькенштейн М. В. Молекула и жизнь. М.: Наука, 1965.- 289 с.

5        Шишловский А. А., Прикладная физическая оптика.- М.: Наука, 1961.- 340 с.

6        Васильев Б. И. Оптика поляризационных приборов.- М.: Наука, 1969.- 364 с.


1. Реферат на тему The Nothing Cause And Effect Essay Research
2. Контрольная работа Виды и формы проведения налогового контроля
3. Реферат на тему Soldier
4. Реферат Исследование вольтамперных характеристик полупроводниковых приборов и слоистых структур
5. Реферат Анализ регулирования и финансирования бюджетного дефицита с 1985 и по наши дни
6. Курсовая Економічна ефективність зовнішньоекономічної діяльності ВАТ Інтерпайп Нижньодніпровський тр
7. Курсовая Информационное обеспечение финансового менеджмента
8. Реферат Мини-теннис
9. Реферат на тему Skateboarding Fundementals And Stuff Essay Research Paper
10. Реферат на тему School Prayer Essay Research Paper Should we