Реферат Сопромат 2
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Рис. 3.1 Рис. 3.2 |
(3.3)
Величины а и b можно подобрать (причем единственным образом) так, чтобы выполнялись следующие равенства:
b×F = Sx ; a×F = Sy
, (3.4)
тогда статические моменты .
Ось, относительно которой статический момент равен нулю, называется центральной. Точка С (x
C , y
C) пересечения центральных осей называется центром тяжести сечения в системе координат (x, y) и определяется из (3.4):
. (3.5)
Далее предположим, что брус имеет составное сечение (рис. 3.3) с общей площадью F. Обозначим через Fk (k
= 1, 2, 3,..., n) площадь k-ой области, принадлежащей к составному сечению бруса. Тогда выражение (3.1) можно преобразовать в следующем виде:
, (3.6)
где - статические моменты k-той области относительно осей x и y. Следовательно, статический момент составного сечения равен сумме статических моментов составляющих областей.
3.2. Моменты инерции сечения
Рис. 3.3 |
В дополнение к статическим моментам в системе координат x0y (рис. 3.1)рассмотрим три интегральных выражения:
(3.7)
Первые два интегральных выражения называются осевыми моментами инерции относительно осей x и y, а третье - центробежным моментом инерции сечения относительно осей x, y.
Для сечений, состоящих из n-числа областей (рис. 3.3), формулы (3.7) по аналогии с (3.6) будут иметь вид:
Рассмотрим, как изменяются моменты инерции сечения при параллельном переносе координатных осей x и y (см. рис. 3.2). Преобразуя формулы (3.7) с учетом выражения (3.2), получим :
(3.8)
Если предположить, что оси x1 и y1 (см. рис. 3.2) являются центральными, тогда и выражения (3.8) упрощаются и принимают вид:
(3.9)
Рис. 3.4 |
Определим осевые моменты инерции прямоугольника относительно осей x и y , проходящих через его центр тяжести (рис. 3.4). В качестве элементарной площадки dF возьмем полоску шириной b и высотой dy (рис. 3.4). Тогда будем иметь:
Аналогичным образом можно установить, что .
Для систем, рассматриваемых в полярной системе координат (рис. 3.5, а), вводится также полярный момент инерции:
.
где r - радиус-вектор точки тела в заданной полярной системе координат.
|
Рис. 3.5
Вычислим полярный момент инерции круга радиуса R. На рис. 3.5, a показана элементарная площадка, очерченная двумя радиусами и двумя концентрическими поверхностями, площадью
dF = r dr dj .
Интегрирование по площади заменим двойным интегрированием:
.
Hайдем зависимость между полярным и осевыми моментами инерции для круга. Из геометрии видно (рис. 3.5, б), что
r2 = x2 + y2,
следовательно,
.
Так как оси x и y для круга равнозначны, то Ix
= I
y
= .
Полярный момент инерции кольца может быть найден как разность моментов инерции двух кругов: наружного (радиусом R) и внутреннего (радиусом r):
.
3.3. Главные оси и главные моменты инерции
Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис. 3.5, б легко установить, что
u = y sin a + x cos a; v = y cos a - x sin a . (3.10)
Из выражений:
с учетом (3.10) после несложных преобразований получим:
(3.11)
Складывая первые два уравнения, получим:
I
u + Iv = Ix + Iy = Ir , (3.12)
где ; Ir - полярный момент инерции сечения, величина которого, как видно, не зависит от угла поворота координатных осей.
Дифференцируя в (3.11) выражение Iu по a и приравнивая его нулю, находим значение a = a0 , при котором функция Iu принимает экстремальное значение:
. (3.13)
С учетом (3.12) можно утверждать, что при a = a0 один из осевых моментов Iu или Iv будет наибольшим, а другой наименьшим. Одновременно при a = a0 Iu
v обращается в нуль, что легко установить из третьей формулы (3.11).
Декартовы оси координат, относительно которых осевые моменты инерции принимают экстремальные значения, называются главными осями инерции. Осевые моменты инерции относительно главных осей называются главными и определяются из (3.11) с учетом (3.13) и имеют вид:
. (3.14)
В заключение введем понятие радиуса инерции сечения относительно координатных осей x и y - ix и iy
, соответственно, которые определяются по формулам:
. (3.15)
3.4. Пример расчета (задача № 3)
Для сечения, составленного из швеллера №20 а, равнобокого уголка (80´80´8)×10-9 м3 и полосы (180´10)×10-6 м2 (рис. 3.6) требуется:
1. Найти общую площадь сечения;
2. Определить центр тяжести составного сечения;
3. Определить осевые и центробежный моменты инерции сечения относительно осей, проходящих через его центр тяжести;
4. Найти положение главных центральных осей инерции;
5. Определить величины главных центральных моментов инерции сечения и проверить правильность их вычисления;
6. Вычислить величины главных радиусов инерции.
|
Рис. 3.6
Решение
Из сортамента выписываем все необходимые геометрические характеристики для профилей, входящих в составное сечение. Швеллер № 20 а (ГОСТ 8240-72): hшв = 0,2 м, bшв = 0,08 м, Fшв = 25,2×10-4м2, = 1670×10-8м4, = 139×10-8м4, = 0,0228 м.
Уголок (80´80´8)×10-9 м3 (ГОСТ 8509-72): bуг = 0,08 м, Fуг = = 12,3×10-4 м2, = 73,4×10-8 м4, = 116×10-8 м4, =30,3×10-8 м4, = 0,0227 м.
Полоса b
П×dП = 18×1×10-4 м2, FП = b
П×dП = 18×1×10-4 м2 = 18×10-4 м2;
м4, = 486×10-8 м4.
1. Определение общей площади составного сечения. Общая площадь составного сечения определяется по формуле:
F = Fшв + Fуг + FП, F = (25,2 + 12,3+18)×10-4 = 55,5×10-4 м2.
2. Определить центр тяжести составного сечения. В качестве вспомогательных осей для определения положения центра тяжести примем горизонтальную и вертикальную оси xшв и yшв , проходящие через центр тяжести швеллера. Статические моменты площади всего сечения относительно этих осей будут равны:
Координаты центра тяжести вычисляем по формулам:
3. Определить осевые и центробежный моменты инерции сечения относительно осей, проходящих через его центр тяжести. Для определения указанных моментов инерции составного сечения воспользуемся формулами, выражающими зависимость между моментами инерции относительно параллельных осей:
(3.16)
(3.17)
(3.18)
В этих формулах расстояние между осями, проходящими через центр тяжести составного сечения, и осями, проходящими через центры тяжести каждой составной части фигуры, а и b (рис. 3.6), в рассматриваемом случае будут равны:
Подставив числовые значения величин в формулы (3.16) и (3.17), получим:
= [1670 + 25,2(-1,7)2 + 73,4 + 12,3(-9,43)2 + 1,5 + 18×(8,8)2]×10-8 = = 4305,4×10-8 м4.
= [139 + 25,2(1,42)2 + 73,4 + 12,3(-3,13)2 + 486 +18(0,14)2)×10-8 = = 870,1×10-8 м4.
При вычислении центробежного момента инерции составного сечения следует иметь в виду, что и равны 0, так как швеллер и полоса имеют оси симметрии, а
,
где a - угол между осью x и главной осью x0 уголка. Этот угол может быть положительным или отрицательным. В нашем примере a = +45°, поэтому:
Далее, подставив числовые значения в формулу (3.18), получим величину центробежного момента инерции составного сечения:
= [0 + 25,2 × (-1,7) × 1,42 + 42,85 + 12,3 × (-9,43) (-3,13) + 0 +
+ 18 × 8,8 × 0,14] ×10-8 = 367,2×10-8 м4.
4. Найти положение главных центральных осей инерции. Угол наклона главных осей инерции, проходящих через центр тяжести составного сечения, к центральным осям инерции x
C и y
C определим по формуле:
.
Так как угол a получился отрицательным, то для отыскания положения главной оси максимального момента инерции u следует ось x0, осевой момент инерции относительно которой имеет наибольшее значение, повернуть на угол a по ходу часовой стрелки. Вторая ось минимального момента инерции v будет перпендикулярна оси u.
5. Определить величины главных центральных моментов инерции сечения и проверить правильность их вычисления. Величины главных центральных моментов инерции составного сечения вычисляем по формуле:
Для контроля правильности вычисления величины моментов инерции составного сечения производим проверки.
1-ая проверка: Imax + Imin == const;
Imax + Imin = (4344,55 + 830,95)×10-8 = (5175,5)×10-8 м4;
= (4305,4 + 870,1)×10-8 = (5175,5)×10-8 м4.
2-ая проверка: Imax >>> 0;
4344,55 ×10-8 > 4305,4×10-8 > 870,1×10-8 > 830,95×10-8 м4.
Проверки удовлетворяются, что говорит о правильности вычисления моментов инерции составного сечения.
6. Вычислить величины главных радиусов инерции. Величины главных радиусов инерции вычисляем по известным формулам:
4. КРУЧЕНИЕ
4.1. Кручение бруса с круглым поперечным
сечением
Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент. Прочие силовые факторы, т.е. Nz
, Qx
, Qy
, Mx
, My
равны нулю.
Для крутящего момента, независимо от формы поперечного сечения бруса, принято следующее правило знаков. Если наблюдатель смотрит на поперечное сечение со стороны внешней нормали и видит момент Mz
направленным по часовой стрелке, то момент считается положительным. При противоположном направлении моменту приписывается отрицательный знак.
При расчете бруса на кручение (вала) требуется решить две основные задачи. Во-первых, необходимо определить напряжения, возникающие в брусе, и, во-вторых, надо найти угловые перемещения сечений бруса в зависимости от величин внешних моментов.
Наиболее просто можно получить решение для вала с круглым поперечным сечением (рис. 4.1 а). Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, заложенное в основу теории кручения, носит название гипотезы плоских сечений.
|
Рис. 4.1
Для построения эпюры крутящих моментов Mz
применим традиционный метод сечений - на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов SM
z
= 0, получим:
M
z = M. (4.1)
Поскольку сечение было выбрано произвольно, то можно сделать вывод, что уравнение (4.1) верно для любого сечения вала -крутящий момент Mz
в данном случае постоянен по всей длине бруса.
Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами r и r + dr выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол dj. При этом образующая цилиндра АВ повернется на угол g и займет положение АВ ¢. Дуга BВ ¢ равна с одной стороны, r dj, а с другой стороны - g d
z. Следовательно,
. (4.2)
Если разрезать образовавшуюся фигуру по образующей и развернуть (рис. 4.1, г), то можно видеть, что угол g представляет собой не что иное, как угол сдвига данной цилиндрической поверхности под действием касательных напряжений t, вызванных действием крутящего момента. Обозначая
, (4.3)
где Q - относительный угол закручивания. Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. Величина Q аналогична относительному удлинению при простом растяжении или сжатии стержня.
Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:
g = r Q. (4.4)
Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:
t = G Q r, (4.5)
где t - касательные напряжения в поперечном сечении бруса. Парные им напряжения возникают в продольных плоскостях - в осевых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений. Момент относительно оси z от действия касательных напряжений t на элементарной площадке dF равен (рис. 4.2):
dM = t r dF.
Рис. 4.2 |
Проинтегрировав это выражение по площади поперечного сечения вала, получим:
. (4.6)
Из совместного рассмотрения (4.5) и (4.6) получим:
. (4.7)
Откуда
. (4.8)
Величина G
Ir называется жесткостью бруса при кручении.
Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:
. (4.9)
Если крутящий момент Mz и жесткость G
Ir по длине бруса постоянны, то из (4.9) получим:
, (4.10)
где j (0) - угол закручивания сечения в начале системы отсчета.
Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него q, согласно (4.8), получим:
t (r)=. (4.11)
Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:
(4.12)
Если же в брусе имеется внутренняя центральная полость радиусом r = , то для кольца
, (4.13)
где с = .
4.2. Кручение бруса с некруглым
поперечным сечением
Определение напряжений в брусе с некруглым поперечным сечением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипотеза плоских сечений, оказывается неприемлимой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.
Таким образом, при определении углов сдвига, в данном случае, необходимо учитывать не только взаимный поворот сечений, но и деформации сечений в своей плоскости, связанная с искривлением сечений.
Задача резко усложняется тем, что для некруглого сечения, напряжения должны определяться как функции уже не одного независимого переменного r, а двух - x и y.
Отметим некоторые особенности законов распределения напряжений в поперечных сечениях некруглой формы. Если поперечное сечение имеет внешние углы, то в них касательные напряжения должны обращаться в нуль. Если наружная поверхность бруса при кручении свободна, то касательные напряжения в поперечном сечении, направленные по нормали к контуру также будут равны нулю.
Рис. 4.3 |
На рис. 4.3 показана, полученная методом теории упругости, эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как видно, напряжения равны нулю, а наибольшие их значения возникают по серединам больших сторон:
в точке А tA = tmax =, (4.14)
где WК = b b3 - аналог полярного момента сопротивления поперечного сечения прямоугольного бруса;
в точке В tB = h tmax , (4.15)
здесь необходимо учесть, что b - малая сторона прямоугольника.
Значения угла закручивания определяется по формуле:
, (4.16)
где IK = a b4 - аналог полярного момента инерции поперечного сечения бруса.
Коэффициенты a, b и h зависят от отношения сторон m = h/b, и их значения приведены в табл. 3.
Таблица 3
m | 1 | 1,5 | 2,0 | 3,0 | 6,0 | 10 |
a | 0,141 | 0,294 | 0,457 | 0,790 | 1,789 | 3,123 |
b | 0,208 | 0,346 | 0,493 | 0,801 | 1,789 | 3,123 |
h | 1,000 | 0,859 | 0,795 | 0,753 | 0,743 | 0,742 |
Геометрические характеристикинаиболее представительных форм сечений обобщены в табл. 4.
4.3. Пример расчета (задача № 4)
Стальной валик переменного сечения, испытывающего кручение, закручивается крутящими моментами, действующими в двух крайних и двух пролетных сечениях. Расчетная схема валика, ее геометрические размеры, величины и точки приложения внешних крутящих моментов указаны на рис. 4.4, а.
Требуется:
1. Построить эпюру крутящих моментов;
2. Найти допускаемую величину момента М;
3. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки;
4. Построить эпюру углов закручивания;
Модуль упругости при сдвиге материала вала G = 8×107 кН/м2. Расчетное сопротивление материала вала срезу RC = 105 кН/м2.
Решение
1. Построить эпюру крутящих моментов
. Для определения величины крутящих моментов используется метод сечений. Согласно расчетной схемы (рис. 4.5, а) для I участка (0 £ z £ 0,5 м):
откуда .
Согласно расчетной схемы (рис. 4.5, б) для участка II (0,5 м £ £ z £ 1,0 м):
откуда .
Согласно расчетной схемы (рис. 4.5, в) для участка III (1,0 м £ £ z £ 1,8 м):
откуда .
По полученным данным строим эпюру крутящих моментов (рис. 4.4, б).
2. Найти допускаемую величину момента М. Допускаемая величина момента МP определяется из условия прочности:
.
|
Рис. 4.4
Сначала определим моменты сопротивления сечения валика для каждого участка.
I участок (трубчатое сечение) согласно (4.13):
где ;
м3.
|
II участок (круглое сечение):
Рис. 4.5
м3.
III участок (прямоугольное сечение):
,
где b - коэффициент, зависящий от отношения сторон прямоугольного сечения h
/
b (h
> b). В данном случае , тогда
м3.
Подсчитаем теперь напряжения по участкам в зависимости от момента М:
.
Из сравнения результатов видно, что наиболее напряженным является участок II, поэтому допускаемая величина момента [M] определяется из зависимости:
откуда
кН×м.
4. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:
для круглого сечения при , t;
для трубчатого сечения при , t;
для прямоугольного сечения (в середине большей стороны) и t1 = g tmax (в середине меньшей стороны).
Подсчитаем моменты инерции сечений валика относительно центра их кручения.
Участок I (трубчатое сечение):
м4.
Участок II (круглое сечение):
м4.
Участок III (прямоугольное сечение):
м4,
где a = 0,243 при h/b = 1/33.
Определим значения напряжений в характерных точках сечений.
Участок I (0
£
z
£
0,5 м):
при кН/м2 = 77,5 МПа;
при кН/м2 =97,0МПа.
Участок II ( 0,5 м
£
z
£
1,5 м):
при
при кН/м2 = 100,0 Мпа.
Участок III (1,0 м
£
z
£
1,8 м): в середине большей стороны
кН/м2 = 86,8 МПа,
в середине меньшей стороны
t3 = g tmax = 0,906×86,7 = 78,6 МПа.
где g = 0,906 при h/b = 1,33.
По полученным данным строятся эпюры напряжений, приведенные на рис. 4.6.
4. Построить эпюру углов закручивания. Угол закручивания на i-ом участке вала в соответствии с (4.10) определяется:
,
где- угол закручивания на правом конце (i-1)-го участка (для первого участка - начальный угол закручивания вала); li - координата начала i-го участка.
Рис. 4.6
Так как, в данном случае в пределах каждого из трех участков крутящие моменты и жесткости на кручение GIr постоянны, то эпюры углов закручивания на каждом из участков будут линейны. В связи с этим, достаточно подсчитать их значения лишь на границах участков. Приняв, что левый конец вала защемлен от поворота, т.е. j (0) = 0, получим:
рад;
рад;
рад.
По полученным данным строим эпюру углов закручивания j (рис. 4.4, в). Сравнивая эпюры t и j, можно отметить очевидную закономерность их изменения по оси z, вытекающую из расчетных формул.
где b - коэффициент, зависящий от отношения сторон прямоугольного сечения h
/
b (h
> b). В данном случае , тогда
м3.
Подсчитаем теперь напряжения по участкам в зависимости от момента М:
.
Из сравнения результатов видно, что наиболее напряженным является участок II, поэтому допускаемая величина момента [M] определяется из зависимости:
откуда
кН×м.
4. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:
для круглого сечения при , t;
для трубчатого сечения при , t;
для прямоугольного сечения (в середине большей стороны) и t1 = g tmax (в середине меньшей стороны).
Подсчитаем моменты инерции сечений валика относительно центра их кручения.
Участок I (трубчатое сечение):
м4.
Участок II (круглое сечение):
м4.
Участок III (прямоугольное сечение):
м4,
где a = 0,243 при h/b = 1/33.
Определим значения напряжений в характерных точках сечений.
Участок I (0
£
z
£
0,5 м):
при кН/м2 = 77,5 МПа;
при кН/м2 =97,0МПа.
Участок II ( 0,5 м
£
z
£
1,5 м):
при
при кН/м2 = 100,0 Мпа.
Участок III (1,0 м
£
z
£
1,8 м): в середине большей стороны
кН/м2 = 86,8 МПа,
в середине меньшей стороны
t3 = g tmax = 0,906×86,7 = 78,6 МПа.
где g = 0,906 при h/b = 1,33.
По полученным данным строятся эпюры напряжений, приведенные на рис. 4.6.
4. Построить эпюру углов закручивания. Угол закручивания на i-ом участке вала в соответствии с (4.10) определяется:
,
где- угол закручивания на правом конце (i-1)-го участка (для первого участка - начальный угол закручивания вала); li - координата начала i-го участка.
|
Рис. 4.6
Так как, в данном случае в пределах каждого из трех участков крутящие моменты и жесткости на кручение GIr постоянны, то эпюры углов закручивания на каждом из участков будут линейны. В связи с этим, достаточно подсчитать их значения лишь на границах участков. Приняв, что левый конец вала защемлен от поворота, т.е. j (0) = 0, получим:
рад;
рад;
рад.
По полученным данным строим эпюру углов закручивания j (рис. 4.4, в). Сравнивая эпюры t и j, можно отметить очевидную закономерность их изменения по оси z, вытекающую из расчетных формул.