Реферат

Реферат История развития станкостроения

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 25.11.2024





СОДЕРЖАНИЕ
КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ                  3
ШЛИФОВАНИЕ                                                                                               6
ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ                             6
КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ                                                  9
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ                                          15

 


КЛАССИФИКАЦИЯ И СИСТЕМА ОБОЗНАЧЕНИЯ СТАНКОВ
Металлорежущие станки в зависимости от вида обработки делят на девять групп (табл 1), а каждую группу - на десять типов (под­групп), характеризующих назначение станков, их компоновку, степень автоматизации или вид применяемого инструмента. Группа 4 предназначена для электроэрозионных, уль­тразвуковых и других станков.

Обозначение модели станка состоит из со­четания трех или четырех цифр и букв. Первая цифра означает номер группы, вторая – номер подгруппы (тип станка), а последние одна или две цифры – наиболее характерные технологи­ческие параметры станка. Например, 1Е116 означает токарно-револьверный одношпиндельный автомат с наибольшим диаметром обрабатываемого прутка 16 мм; 2Н125 озна­чает вертикально-сверлильный станок с наи­большим условным диаметром сверления 25 мм. Буква, стоящая после первой цифры, указывает на различное исполнение и модер­низацию основной базовой модели станка. Буква в конце цифровой части означает моди­фикацию базовой модели, класс точно­сти станка или его особенности. Классы точности станков обозначают: Н – нормаль­ной; П – повышенной; В – высокой, А – осо­бо высокой точности и С – особо точные станки. Принята следующая индексация моде­лей станков с программным управлением: Ц – с цикловым управлением; Ф1 – с цифро­вой     индексацией     положения,     а     также с предварительным набором координат; Ф2 – с позиционной системой ЧПУ, ФЗ – с контурной системой ЧПУ; Ф4 – с комби­нированной системой ЧПУ. Например, 16Д20П – токарно-винторезный станок повы­шенной точности; 6Р13К-1 – вертикально-фре­зерный консольный станок с копировальным устройством; 1Г340ПЦ – токарно-револьвер­ный станок с горизонтальной головкой, повышенной точности, с цикловым про­граммным управлением; 2455АФ1 – коорди-натно-расточный двухстоечный станок особо высокой точности с предварительным набо­ром координат и цифровой индикацией; 2Р135Ф2 – вертикально-сверлильный станок с револьверной головкой, крестовым столом и с позиционной системой числового про­граммного управления; 16К20ФЗ – токарный станок с контурной системой числового йро» граммного управления; 2202ВМФ4 – многоце­левой (сверлильно-фрезерно-расточный) гори­зонтальный станок высокой точности с ин­струментальным магазином и с комбиниро­ванной системой ЧПУ (буква М означает, что станок имеет магазин с инструментами).

Станки подразделяют на широкоунивер­сальные, универсальные (общего назначения), специализированные и специальные.

Специальные и специализированные станки обозначают буквенным индексом (из одной или двух букв), присвоенным каждому заводу, с номером модели станка. Например, мод. МШ–245 – рейкошлифовальный полуавтомат повышенной точности Московского завода шлифовальных станков.



Таблица 1 – Классификация металлорежущих станков

Станки



Группа

Типы станков

0

1

2

3

4

5

6

7

8

9

Токарные



1

Автоматы и полуавтоматы

Токарноревольверные

Токарноревольверные автоматы

Карусельные

Токарные и лоботокарные

Многорезцовые и копировальные

Специализированные

Разные токарные

специализированные

одношпиндельные

многошпиндельные

Сверлильные и расточные

2



Настольно- и вертикальносверлильные

Полуавтоматы

Координатнорасточные

Радиально- и координатносверлильные

Расточные

Отделочнорасточные

Горизонтально сверлильные

Разные сверлильные

одношпиндельные

многошпиндельные

Шлифовальные, полировальные, доводочные, заточные

3



Круглошлифовальные, бесцентровошлифовальные

Внутришлифовальные, координатношлифовальные

Обдирочношлифовальные

Специализированные шлифовальные

Продольношлифовальные

Заточные

Плоскошлифовальные

Притирочные, полировальные, хонинговальные, доводочные

Разные станки, работающие абразивом

Электрофизические и электрохимические



4





Светолучевые



Электрохимические





Электроэрозионные, ультразвуковые прошивочные

Анодномеханические отрезные



Зубо- и резьбообрабатывающие

5

Резьбонарезные

Зубодолбежные для цилиндрических колес

Зуборезные для конических колес

Зубофрезерные для цилиндрических колес и шлицевых валов

Для нарезания червячных колес

Для обработки торцев зубьев колес

Резьбофрезерные

Зубоотделочные, проверочные и обкатные

Зубо- и резьбошлифовальные

Разные зубо- и резьбообрабатывающие

Фрезерные



6

Барабанно-фрезерные

Вертикально-фрезерные консольные

Фрезерные непрерывного действия

Продольные одностоечные

Копировальные гравировальные

Вертикальнофрезерные бесконсольные

Продольные двухстоечные

Консольнофрезерные операционные

Горизонтально-фрезерные консольные

Разные фрезерные

Строгальные, долбежные, протяжные

7



Продольные

Поперечнострогальные

Долбежные

Протяжные горизонтальные

Протяжные вертикальные для протягивания



Разные строгальные станки

одностоечные

двухстоечные

внутреннего

наружного

Разрезные



8



Отрезные, работающие

Правильно-отрезные

Ленточнопильные

Отрезные с дисковой пилой

Отрезные ножовочные





резцом

абразивным кругом

гладким или насечным диском

Разные



9



Трубо- и муфтообрабатывающие

Пилонасекательные

Правильно- и бесцентровообдирочные



Для испытания инструментов

Делительные машины

Балансировочные






ШЛИФОВАНИЕ
Шлифование- это процесс резания материалов с помощъю абразивного материала, режущими элементами которого являются абразивные зерна. Шлифование применяется как для черновой так и для чистовой и отделочной обработки.

 При шлифовании главным движением является вращение режущего инструмента с очень большой скоростью. Чаще всего в качестве шлифовального инструмента используются шлифовальные круги. Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Каждое абразивное зерно работает как зуб фрезы, снимая стружку.

Процесс резания при шлифовании имеет значительное отличие по сравнению с работой лезвийного инструмента. При вращательном движении круга, в зоне его контакта с заготовкой часть зерен срезает материал в виде очень большого числа тонких стружек (до 100 000 000 в минуту). Шлифовальные круги срезают стружки на очень больших скоростях- от 30 м/c и выше (порядка 125 м/c). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость. Часть зерен ориентирована так, что не может резать обрабатываемую поверхность.

Такие зерна производят работу трения по поверхности резания. Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристалической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствии упругопластического деформирования материала обработанная поверхность упрочняется. Но этот эффект оказывается менее ощутимым, чем при обработке металлическим инструментом.

 Шлифование применяют в основном для заготовок из закаленных сталей. С развитием малоотходных технологий доля обработки металлическим инструментом будет уменьшаться, а абразивным увеличиваться.
ИНСТРУМЕНТ, ПРИМЕНЯЕМЫЙ ПРИ ШЛИФОВАНИИ

 

В промышленности находят применение как естественные, так и искуственные абразивные материалы.

 К естественным абразивным материалам относятся алмаз, корунд, наждак и некоторые другие. Однако ввиду того, что свойства этих материалов нестабильны, а запасы их ограничины, основное применение в промышленности получили искуственные материалы. К искуственным абразивным материалам относятся электрокорунд, корборунд, карбид бора, синтетические алмазы и сверхтвердые материалы, полученые на основе кубического нитрида бора.

 Электрокорунд представляет собой кристалический оксид алюминия Al2O3. В зависимости от содержания оксида алюминия различают три типа электрокорунда: нормальный электрокорунд (Э), содержащий до 95% Al2O3, электрокорунд белый (ЭБ), содержащий 95-98% Al2O3 , режущая способность которого значительно выше (на 30-40%), и монокорунд, содержащий 98-99% Al2O3. Чем выше содержание кристалического оксида алюминия в электрокорунде, тем выше его режущие свойства. Электрокорунд применяется для шлифования сталей, чугунов и цветных металлов. Абразивные материалы из монокорунда предназначены для получитового и чистового шлифования деталей из цементированых, закаленных и высоколегированых сталей. Карбид кремния (карборунд SiC) по сравнению с электрокорундом обладает большей твердостью, но и хрупкостью. При дроблении его зерна имеют более острые кромки, что обеспечиват повышеную производительность обработки.

Карбид кремния выпускают двух марок. Карбид кремния черный (КЧ) содержит 95-97% SiC и применяется для обработки хрупких металлических материалов, цветных металлов и неметаллов. Карбид кремния, содержащий не менее 97% SiC, имеет зеленый цвет (КЗ) и обладает более высокими свойствами. Он премущественно используется для заточки твердосплавного режущего инструмента.

 Карбид бора (B4C) отличается черезвычайно высокой прочностью, но очень хрупок и дорог. Используется в основном в виде несвязанных образивных зерен для доводки твердосплавного режущего инструмента, притирки, резки драгоценных камней и т.д..

 Синтетические алмазы (СА) получают из графита (99,7%С и 0,3% примеси) в специальных камерах при давлении около 1,3 ГПа в присутствии катализатора и температурах 1200-2400 С. В зависимости от температуры получается различная форма кристаллов и окраска от черного цвета при низких температурах до светлого при высоких.

 Синтетические алмазы имеют брльшую острату режущих кромок по сравнению с естественными и потому более производительны в качестве образивного инструмента. Алмаз имеет черезвычайно высокие режущие свойства, так как он является самым твердым веществом, обладает очень высокой теплопроводностью и износостойкостью, имеет малый коэффициент трения по металлу. Однако он недостаточно теплостоек (до 800С), что позволяет его использовать в соновном для обработки хрупких материалов, цветных металлов и неметаллов.

 Кубический нитрид бора (КНБ)- эльбор, боразон и другие- синтетический сверхтвердый материал близок по твердости к алмазам, но имеет теплостойкость почти вдвое более высокую (до 1500С). Высокая теплостойкость и малое химическое сродство с железом позволяет успешно использовать его для обработки высокопрочных и закаленных сталей и сплавов на основе железа.

 Зерна абразивных материалов являются режущими элементами абразивных инструментов.Основным видом абразиных инструментов являются шлифовальные круги, форма и размер которых определяет ГОСТ 2424-60, который предусматривает 22 пофиля с диаметрами от 3 до 1100 мм. Среди них наиболее часто применяются следующие формы: плоские прямые (ПП), плоские с выточкой (ПВ), чашечные цилиндрические (ЧЦ) и конические (ЧК), кольца (1К), тарельчатые (2Т) и т.д..

 Все большее применение находит обработка с применением образивной ленты. Этот метод применяется для черновой, чистовой и отделочной обработки и во многих случаях обеспечивает значительное повышение производительности труда.

 Свойства абразивных инструментов и их работоспособность будут определяться маркой абразивного материала, а также характеристиками инструмента: зернистостью абразива, видом связки, твердостью и структурой. По размеру абразивные зерна подразделяются на 26 номеров зернистости и делятся на шлифзерна(номера зернистости 200-16), шлифпорошки (номера 12-3) и микропорошки (номера М40-М5). Номер шлифзерна и шлифпорошка соответствуют размеру зерен в сотых долях миллиметра, а номер микропорошков показывает размер зерна в микрометрах.

 Выбор зернистости абразивного инструмента определяется величиной припуска на обработку, чистотой обработанной поверхности и точностью обработки. Для грубой предварительной обработки и обработки вязких материалов рекомендуется крупнозернистые инструменты, обеспечивающие высокую производительность, но низкое качество. Отделочные работы производятся мелкозернистыми кругами.

 Для соединения абразивных зерен в абразивный инстрмент служит связка. Связки подразделяют на органические и неорганически. Из неорганических связок наиболее часто применяются керамические (К) и силикатные (С).

 Керамическая связка состоит из огнеупорной глины,полевого шпата, талька и жидкого стекла. Благодоря высокой прочности, водостойкости и жаропрочности она является самой распрастраненной. Недостатком керамической связки является значительная хрупкость.

 Силикатная связка представляет собой жидкое стекло и имеет небольшую прочность. Круги на силикатной связке предназначены для обработки деталей в тех случаях, когда не допускается повышение температуры и нельзя применять смазочно-охлаждающие жидкости.

 К органичиским связкам относятся вулканитовая (В) и бакелитовая (Б). Вулканитовая связка состоит из 70% каучука и 30% серы. Абразивные инструменты на такой связке обладают большой прочностью, но имеют малую теплостойкость. Связка применяется для узких фасонных кругов. Бакелитовая связка представляет собой синтетическую смолу. Круги, изготовленные на этой связке, прочны, эластичны, допускают большие окружные скорости, но могут применяться при температуре не выше 180С.

 Алмазные круги состоят из стального, алюминиевого или пластмассового кольца (основания) и закрепленного на нем алмазного слоя толщиной 1,5-5,0 мм.

 Абразивный инструмент должен обладать определенной твердостью. Под твердостью понимается способность связки удерживать абразивные зерна. В соответствии с этим разработана шкала твердости, согласно которой все аразивные делятся на 16 степеней твердости. Для каждого конкретного случая обработки необходимо подбирать инструмент определенной твердости. В круге повышенной твердости при работе продолжают удерживаться притупившиеся зерна, что приводит к повышению температуры в зоне резания и прижогу обрабатываемой поверхности. Такой круг требует частичной правки для восстановления режущей способности. Слишком мягкий круг будет сильно изнашиваться, при этом будут выкрашиваться зерна, не потерявшие еще своей остроты.

 При подборе круга для данных условий обработки стремятся добиться "самозатачивания". В этом случае своевременно будут выкрашиваться затупившиеся зерна и открываться новые, острые.

 В любом абразивном инструменте наряду с абразивными зернами и связкой имеются поры(пустоты), способствующие его охлаждению в процессе работы. Структура абразивного инструмента определяется количественным соотношением в нем зерен, связки и пор. Имеется 13 номеров структур. Чем больше номер структуры, тем меньше в единице объема зерен и больше пор.

 Характеристики образивных кругов маркируются на нерабочей поверхности круга, где приводятся их условные обозначения: вид образивного материала, зернистость, форма, размер и допустимая максимальная скорость вращения.

 В процессе работы щлифовального круга абразивные зерна изнашиваются и теряют режущую способность, а круг засаливается продуктами обработки. Для восстановления режущих свойств и геометрической формы производится переодическая правка круга. Наиболее качественная правка производиться алмазными инструментами.

 Более грубая правка осуществляется шарошками, оснащенными монолитными твердосплавными дисками, металлическими дисками и звездочками из износосойких сталей или правочными кругами из карбида кремния, термокорунда т.д.

КОМПОНОВКА МЕХАНИЧЕСКИХ ЦЕХОВ
Правильное размещение оборудования является основным звеном в организации безопасной работы производственного участка и цеха. При размещении оборудования необходимо соблюдать установленные минимальные разрывы между станками, между станками и отдельными элементами здания, правильно определять ширину проходов и проездов. Невыполнение правил и норм размещения оборудования приводит к загромождению помещений и травматизму.

Расположение оборудования на площади цеха или участка определяется в основном технологическим процессом и местными условиями.

При автоматизированном производстве (комплексные автоматические заводы или цеха, автоматические линии, поточное производство) оборудование размещается по ходу технологического процесса в единую цепочку с соблюдением расстояний между оборудованием и конструктивными элементами здания. На автоматических и поточных линиях большой протяженности для перехода с одной стороны линии на другую устраивают переходные мостики.

При многостаночном обслуживании оборудование располагают с учетом максимально возможного сокращения расстояний между рабочими местами. Если по условиям технологического процесса необходимо предусмотреть стеллажи или столы для заготовок и готовых изделий, то для этого отводится дополнительная площадь в соответствии с особенностями производства.

Размещение металлорежущих станков, слесарных верстаков и другого оборудования в цехах холодной обработки принимается таким, чтобы расстояние между отдельными станками или группами станков были достаточными для свободного прохода рабочих, занятых . их обслуживанием и ремонтом. Во всех случаях размещение оборудования должно обеспечивать достаточное число проходов для людей и проездов для транспорта, обеспечивающих безопасность сообщения. Ширина проходов и проездов назначается в зависимости от расположения оборудования, характера движения, способа транспортирования и размеров деталей, но при всех условиях принимается не менее 1 м. Для перевозки грузов автомашинами устраиваются проезды шириной 3,5 м. Загромождение проходов и проездов, а также рабочих мест различными предметами не разрешается.

Проходы и проезды требуется содержать в чистоте и порядке, границы их обычно отмечаются белой краской или металлическими светлыми кнопками. Ширина рабочей зоны принимается не менее 0,8 м. Расстояние между оборудованием и элементами зданий, а также размеры проходов и проездов определяются нормами технологического проектирования механических и сборочных цехов машиностроительных заводов.

В единичном и мелкосерийном производстве часто оборудование размещается по группам станков (токарные, фрезерные, расточные, шлифовальные и т. п. станки); однако необходимо стремиться к тому, чтобы расположение оборудования исключало возможность возникновения в процессе работы встречных потоков материалов, полуфабрикатов и людей. Целесообразно устраивать в пролетах между оборудованием одностороннее движение. При транспортировании различных заготовок в проходах (особенно заготовок большой длины) нельзя допускать, чтобы транспортные средства и заготовки стесняли рабочую зону или выходили за границы проезда, прохода.

Рабочее место является первичным звеном производства, оно представляет собой определенный участок производственной площади цеха, предназначенный для выполнения одним рабочим (или бригадой) порученной работы, специально приспособленный и технически оснащенный в соответствии с характером этой работы. От того, насколько правильно и рационально будет организовано рабочее место, зависит безопасность и производительность труда. Как правило, каждое рабочее место оснащено основным и вспомогательным оборудованием и соответствующим инструментом. Отсутствие на рабочем месте удобного вспомогательного оборудования или нерациональное его расположение, захламленность создают условия для возникновения травматизма.


Рис. 1. Планировка рабочего места токаря
На рис. 1 приведена типовая организация рабочего места токаря-универсала. Рабочее место включает следующие принадлежности: тумбочку станочника для двухсменной работы 1, в каждом отделении которой хранится инструмент постоянного пользования и средства по уходу за станком; приемный стол 2 для размещения на нем тары с заготовками и обработанными деталями, нижняя полка стола используется для хранения принадлежностей к станку (патронов, люнетов и др.); деревянную решетку 3 под ноги, высота которой регулируется по росту станочника. По такой схеме целесообразно организовывать рабочие места и других станочников (фрезеровщиков, зуборезчиков, шлифовщиков и т. п.).


Рис. 2. Рабочее место сварщика для сварки малогабаритных изделий
Рабочее место сварщика, изображенное на рис. 2, предназначено для сварки малогабаритных металлоконструкций в серийном и мелкосерийном производствах. Оно укомплектовано необходимой оргоснасткой с учетом рекомендаций научной организации труда. В рабочее место входит: стол сварщика 2, стул 3, стеллажи для заготовок 1 и сварных узлов 6, два перемещающихся стола 11, подставка для подающего механизма 5, аппаратный шкаф 8, инструментальная тумбочка 9, аппарат 7 для сбора флюса, поворотный консольный кран 4 и ящик для флюса 10. Такое размещение оборудования обеспечивает удобную и устойчивую позу сварщика в процессе работы, снижает затраты времени на вспомогательные операции и физическую нагрузку, улучшает условия труда. Рабочее место снабжается приемниками вытяжной вентиляции у сварочных столов.



Рис. 3. План рабочего места контролера:

1,3 и 5 — столы контролера; 2 — тележка малая; 4 — поверочная плита; 6 и 7 — столы приборные; 8 — тумбочка инструментальная; 9 — шкаф инструментальный; 10 — стол приемный рольганговой секции; 11 — каретка-оператор
На рис. 3 приведен план рабочего места контролера, организованного с учетом требований НОТ. Контрольный пункт оборудован удобной оргоснасткой и оснащен требуемыми измерительными приборами в зависимости от обслуживаемого производства. Детали, подлежащие контролю, подаются на контрольный пункт и на любое рабочее место контролера и возвращаются после контроля на специальных транспортных средствах, что исключает ручной труд. Такая организация рабочего места повышает производительность труда и уменьшает утомляемость контролера.

Мероприятия по улучшению организации рабочих мест заключаются в рационализации трудовых движений и соответствующем оборудовании рабочего места. Технологический процесс не должен допускать непроизводительных и опасных трудовых движений и тем более опасных поз рабочего.

Пространство, в котором совершается основная часть трудовых движений, сравнительно невелико. Исследования показывают, что наиболее благоприятная зона для работ сидя определяется площадкой в 0,1 м2, когда предплечье поворачивается в локтевом суставе (руки полусогнуты). Другие зоны, например работа с помощью полностью вытянутых рук, менее благоприятны и вызывают быструю утомляемость. При работе стоя благоприятная зона также невелика. Осуществляя рационализацию трудовых движений, необходимо стремиться к обеспечению коротких и наименее утомительных движений. Следует помнить: чем больше сочленений участвуют в выполнении движения, тем оно, как правило, требует большей затраты сил. Поэтому при планировке рабочих мест и, в частности, при расстановке предметов организационно-технической оснастки необходимо предусматривать применение наиболее простых движений: движения одних пальцев, движения пальцев и запястья или движения пальцев, запястья и предплечья. Следует, по возможности, устранять такие движения, которые требуют участия не только плеча, но и всего корпуса.

При размещении на рабочем месте организационно-технической оснастки (стеллажей для заготовок и готовых деталей, инструментальной тумбочки, планшетов и пр.) или вспомогательного оборудования (поворотные краны, транспортеры и пр.) следует тщательно проверить по зонам досягаемости рук, насколько рационально установлен тот или иной предмет и какие виды движений будет при этом применять рабочий. Однако решение этой задачи не должно приводить к сближению оборудования, так как в противном случае рабочее место будет стеснено, и вероятность возникновения травматизма увеличится. На практике, используя опыт новаторов производства и соответствующие нормы при расстановке вспомогательного оборудования и оснастки, следует придерживаться такого принципа: заготовки и полуфабрикаты располагать на специальных стеллажах с левой стороны от рабочего, измерительный инструмент и тару для готовых деталей — с правой. Предметы, которыми пользуется рабочий чаще, располагают ближе к станку.

Планировка рабочего места зависит от многих условий — от типа оборудования, конфигурации и габаритов деталей, применяемой технологии, организации обслуживания, но для аналогичных работ можно установить типовые рациональные планировки рабочих мест. Следует отметить, что основное и вспомогательное оборудование не должно выходить за пределы площадки, отведенной для данного рабочего места, и устройство рабочего места должно учитывать рост и другие антропометрические данные каждого рабочего.
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1.     Справочник технолога-машиностроителя: В 2т. /Под ред. А.Г. Косиловой, Р.К. Мещерякова. – М.: Машиностроение, 1985. – 496 с. – Т.2.

2.     Справочник технолога-машиностроителя. – М.: Машиностроение, 1986.

3.     Справочник инструментальщика / И.А. Ординарцев, Г.В. Филиппов, А.Н. Шевченко и др.; Под общ. Ред. И.А. Ординарцева. – Л.: Машиностроение. Ленингр. отд-ние, 1987.

4.     Металлорежущие станки и автоматы / Под ред. А. С. Проникова. – М.: Машиностроение, 1981. – 479 с.



1. Реферат Категории земель и перевод земли из одной категории в другую
2. Реферат Восточный Иерусалим
3. Реферат на тему The Women Essay Research Paper The women
4. Реферат Нормируемые командировочные расходы
5. Реферат на тему Личность в истории Сталин
6. Реферат на тему Evil Of Man Essay Research Paper Evil
7. Реферат на тему Храм
8. Реферат на тему Королевство Кастилии и Леона в XIII - XV вв
9. Реферат Экологические системы Республики Башкортостан
10. Курсовая на тему Общие принципы характерные для нейросетей