Реферат Композиционные материалы алюминий
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Около 100 лет назад Николай Гаврилович Чернышевский, сказал об алюминии, что этому металлу суждено великое будущее, что алюминий – металл социализма. Он оказался провидцем: в XX в. элемент №13 алюминий стал основой многих конструкционных материалов. Элемент 3-го периода и IIIА-группы Периодической системы. Электронная формула атома [10Ne]3S23p1 степени окисления +III и 0. По электроотрицательности (1,47) одинаков с бериллием, проявляет амфотерные (кислотные и основные) свойства. В соединениях может находиться в составе катионов и анионов. В природе — четвертый по химической распространенности элемент (первый среди металлов), находится в химически связанном состоянии. Входит в состав многих алюмосиликатных минералов, горных пород (граниты, порфиры, базальты, гнейсы, сланцы), различных глин (белая глина называется каолин), бокситов и глинозёма Аl2О3.
Любопытно проследить динамику производства алюминия за полтора столетия, прошедших с тех пор, как человек впервые взял в руки кусочек легкого серебристого металла.
За первые 30 лет, с 1825 по 1855 г., точных цифр нет. Промышленных способов получения алюминия не существовало, в лабораториях же его получали в лучшем случае килограммами, а скорее – граммами. Когда в 1855 г. на Всемирной парижской выставке впервые был выставлен алюминиевый слиток, на него смотрели как на редчайшую драгоценность. А появился он на выставке потому, что как раз в 1855 г. французский химик Анри Этьенн Сент-Клер Девиль разработал первый промышленный способ получения алюминия, основанный на вытеснении элемента №13 металлическим натрием из двойного хлорида натрия и алюминия NaCl · AlCl3.
За 36 лет, с 1855 по 1890 г., способом Сент-Клер Девиля было получено 200 т металлического алюминия.
В последнее десятилетие XIX в (уже по новому способу) в мире получили 28 тыс. т алюминия.
В 1930 г. мировая выплавка этого металла составила 300 тыс. т.
В 1975 г. только в капиталистических странах получено около 10 млн. т алюминия, причем эти цифры – не наивысшие. По сведениям американского «Инжениринг энд майнинг джорнэл», производство алюминия в капиталистических странах в 1975 г. снизилось по сравнению с 1974 г. на 11%, или на 1,4 млн. т .
Столь же поразительны перемены и в стоимости алюминия. В 1825 г. он стоил в 1500 раз дороже железа, в наши дни – лишь втрое. Сегодня алюминий дороже простой углеродистой стали, но дешевле нержавеющей. Если рассчитывать стоимость алюминиевых и стальных изделий с учетом их массы и относительной устойчивости к коррозии, то оказывается, что в наши дни во многих случаях значительно выгоднее применять алюминий, чем сталь.
Алюминий — важнейший конструкционный материал, основа легких коррозионно-стойких сплавов (с магнием - дюралюмин, или дюраль, с медью - алюминиевая бронза, из которой чеканят мелкую разменную монету). Чистый алюминий в больших количествах идет на изготовление посуды и электрических проводов.
Применение алюминия:
Сочетание физических, механических и химических свойств алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с другими металлами. В электротехнике алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из алюминия вдвое меньше медных). Сверхчистый алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности окисной пленки алюминия пропускать электрический ток только в одном направлении. Сверхчистый алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа AIII BV, применяемых для производства полупроводниковых приборов. Чистый алюминий используют в производстве разного рода зеркал отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, алюминий применяется как конструкционный материал в ядерных реакторах.
В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют и оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделии. Резко возросло потребление алюминия для отделки зданий, архитектурных, транспортных и спортивных сооружений.
В металлургии алюминий (помимо сплавов на его основе) — одна из самых
распространённых легирующих добавок в сплавах на основе Cu, Mg, Ti, Ni, Zn и Fe. Применяют алюминий также для раскисления стали пред заливкой её в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе алюминия методом порошковой металлургии создан САП (спечённый алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.
Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения алюминия.
Производство и потребление алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.
8,80% массы земной коры составлены алюминием – третьим по распространенности на нашей планете элементом. Мировое производство алюминия постоянно растет. Сейчас оно составляет около 2% от производства стали, если считать по массе. А если по объему, то 5...6%, поскольку алюминий почти втрое легче стали. Алюминий уверенно оттеснил на третье и последующие места медь и все другие цветные металлы, стал вторым по важности металлом продолжающегося железного века. По прогнозам, к концу нынешнего столетия доля алюминия в общем выпуске металлов должна достигнуть 4...5% по массе.
Причин тому множество, главные из них – распространенность алюминия, с одной стороны, и великолепный комплекс свойств – легкость, пластичность, коррозионная стойкость, электропроводность, универсальность в полном смысле этого слова – с другой.
Алюминий поздно пришел в технику потому, что в природных соединениях он прочно связан с другими элементами, прежде всего с кислородом и через кислород с кремнием, и для разрушения этих соединений, высвобождения из них легкого серебристого металла нужно затратить много сил и энергии.
Первый металлический алюминий в 1825 г. получил известный датский физик Ганс Христиан Эрстед, известный в первую очередь своими работами по электромагнетизму. Эрстед пропускал хлор через раскаленную смесь глинозема (окись алюминия Аl2О3) с углем и полученный безводный хлористый алюминий нагревал с амальгамой калия. Затем, как это делал еще Дэви, которому, кстати, попытка получить алюминий электролизом глинозема не удалась, амальгаму разлагались нагреванием, ртуть испарялась, и – алюминий явился на свет.
В 1827 г. Фридрих Вёлер получил алюминий иначе, вытеснив его из того же хлорида металлическим калием. Первый промышленный способ получения алюминия, как уже упоминалось, был разработан лишь в 1855 г., а технически важным металлом алюминий стал лишь на рубеже XIX...XX вв. Почему?
Самоочевидно, что далеко не всякое природное соединение алюминия можно рассматривать как алюминиевую руду. В середине и даже в конце XIX в. в русской химической литературе алюминий часто называли глинием, его окись до сих пор называют глиноземом. В этих терминах – прямое указание на присутствие элемента №13 в повсеместно распространенной глине. Но глина – достаточно сложный конгломерат трех окислен – глинозема, кремнезема и воды (плюс разные добавки); выделить из нее глинозем можно, но сделать это намного труднее, чем получить ту же окись алюминия из достаточно распространенной, обычно красно-бурого цвета горной породы, получившей свое название в честь местности Ле-Бо на юге Франции.
Эта порода – боксит содержит от 28 до 60% Al2О3. Главное ее достоинство в том, что глинозема в ней по меньшей мере вдвое больше, чем кремнезема. А кремнезем – самая вредная в этом случае примесь, от нее избавиться труднее всего. Кроме этих окислов, боксит всегда содержит окись железа Fe2О3, бывают в нем также окислы титана, фосфора, марганца, кальция и магния.
В годы второй мировой войны, когда многим воюющим странам не хватало алюминия, полученного из боксита, использовали по необходимости и другие виды сырья: Италия получала алюминий из лавы Везувия, США и Германия – из каолиновых глин, Япония – из глинистых сланцев и алунита. Но обходился этот алюминий в среднем впятеро дороже алюминия из боксита, и после войны, когда были обнаружены колоссальные запасы этой породы в Африке, Южной Америке, а позже и в Австралии, алюминиевая промышленность всего мира вернулась к традиционному бокситовому сырью.
В Советском Союзе существуют опробованные в заводских масштабах способы производства алюминия на основе нефелиносиенитовых и нефелиноапатитовых пород. В Азербайджанской ССР давно начато промышленное освоение алунита как комплексного, в том числе и алюминиевого, сырья. Но и лучшим алюминиевым сырьем – бокситом природа нас не обделила. У нас есть Северо-Уральский и Тургайский (расположенный в Казахстане) бокситоносные районы: есть бокситы в Западной и Восточной Сибири, на северо-западе европейской части страны. На базе Тихвинского бокситового месторождения и энергии Волховской ГЭС начинал в 1932 г. свою работу первенец отечественной алюминиевой промышленности Волховский алюминиевый завод. Дешевая электроэнергия огромных сибирских ГЭС и ГРЭС стала важным «компонентом» развивающейся высокими темпами алюминиевой промышленности Сибири.
Разговор об энергии мы повели не случайно. Алюминиевое производство энергоемко. Чистая окись алюминия плавится при температуре 2050°C и не растворяется в воде, а чтобы получить алюминий, ее надо подвергнуть электролизу. Необходимо было найти способ как-то снизить температуру плавления глинозема хотя бы до 1000°C; только при этом условии алюминий мог стать технически важным металлом. Эту задачу блестяще разрешил молодой американский ученый Чарльз Мартин Холл и почти одновременно с ним француз Поль Эру. Они выяснили, что глинозем хорошо растворяется в криолите 3NaF · AlF3. Этот раствор и подвергают электролизу на нынешних алюминиевых заводах при температуре 950°C.
Аппарат для электролиза представляет собой железную ванну, футерованную огнеупорным кирпичом с угольными блоками, которые выполняют роль катодов. На них выделяется расплавленный алюминий, а на анодах – кислород, реагирующий с материалом анодов (обычно – углем). Ванны работают под невысоким напряжением – 4,0...4,5 В, но при большой силе тока – до 150 тыс. А.
По американским данным, за последние три десятилетия потребление энергии при выплавке алюминия сократилось на одну треть, но все равно это производство остается достаточно энергоемким.
Алюминий чистотой свыше 99,99% впервые был получен электролизом в 1920г.
В 1925 г. в работе Эдвардса опубликованы некоторые сведения о физических
и механических свойствах такого алюминия. В 1938г. Тэйлор, Уиллей, Смит
и Эдвардс опубликовали статью, в которой приведены некоторые свойства
алюминия чистотой 99,996%, полученного во Франции также электролизом.
Первое издание монографии о свойствах алюминия вышло в свет в 1967г.
В последующие годы благодаря сравнительной простоте получения и
привлекательным свойствам опубликовано много работ о свойствах алюминия. Чистый алюминий нашёл широкое применение в основном в электронике – от электролитических конденсаторов до вершины электронной инженерии - микропроцессоров; в криоэлектронике, криомагнетике.
Более новыми способами получения чистого алюминия являются метод зонной очистки , кристаллизация из амальгам (сплавов алюминия со ртутью) и выделение из щёлочных растворов. Степень чистоты алюминия контролируется величиной электросопротивления при низких температурах.
В настоящее время используется следующая классификация алюминия по
степени чистоты:
Обозначение Содержание алюминия по массе,%
Алюминий промышленной чистоты 99,5 - 99,79
Высокочистый алюминий 99,80 - 99,949
Сверхчистый алюминий 99,950 - 99,9959
Особочистый алюминий 99,9960 - 99,9990
Ультрачистый алюминий свыше 99,9990
Большинство металлических элементов сплавляются с алюминием, но только некоторые из них играют роль основных легирующих компонентов в
промышленных алюминиевых сплавах. Тем не менее значительное число
элементов используют в качестве добавок для улучшения свойств сплавов.
Наиболее широко применяются:
Бериллий добавляется для уменьшения окисления при повышенных
температурах. Небольшие добавки бериллия (0,01 - 0,05%) применяют в
алюминиевых литейных сплавах для улучшения текучести в производстве
деталей двигателей внутреннего сгорания (поршней и головок цилиндров).
Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной
энергетике(кроме деталей реакторов), т.к. он поглощает нейтроны,
препятствуя распространению радиации. Бор вводится в среднем в
количестве 0,095 - 0,1%.
Висмут. Металлы с низкой температурой плавления, такие как висмут,
свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения
обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие
фазы, которые способствуют ломкости стружки и смазыванию резца.
Галлий добавляется в количестве 0,01 - 0,1% в сплавы, из которых далее
изготавливаются расходуемые аноды.
Железо. В малых количествах ((0,04%) вводится при производстве проводов
для увеличения прочности и улучшает характеристики ползучести. Так же
железо уменьшает прилипание к стенкам форм при литье в кокиль.
Индий. Добавка 0,05 - 0,2% упрочняют сплавы алюминия при старении,
особенно при низком содержании меди. Индиевые добавки используются в
алюминиево - кадмиевых подшипниковых сплавах.
Примерно 0,3% кадмия вводят для повышения прочности и улучшения
коррозионных свойств сплавов.
Кальций придаёт пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.
Кремний является наиболее используемой добавкой в литейных сплавах. В
количестве 0,5 - 4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.
Магний. Добавка магния значительно повышает прочность без снижения
пластичности, повышает свариваемость и увеличивает коррозионную
стойкость сплава.
Медь упрочняет сплавы, максимальное упрочнение достигается при
содержании меди 4 - 6%. Сплавы с медью используются в производстве
поршней двигателей внутреннего сгорания, высококачественных литых
деталей летательных аппаратов.
Олово улучшает обработку резанием.
Титан. Основная задача титана в сплавах - измельчение зерна в отливках и
слитках, что очень повышает прочность и равномерность свойств во всём
объёме.
Хотя алюминий считается одним из наименее благородных промышленных
металлов, он достаточно устойчив во многих окислительных средах.
Причиной такого поведения является наличие непрерывной окисной плёнки на поверхности алюминия, которая немедленно образуется вновь на зачищенных участках при воздействии кислорода, воды и других окислителей.
Большинство алюминиевых сплавов имеют высокую коррозионную стойкость в естественной атмосфере, морской воде, растворах многих солей и химикатов и в большинстве пищевых продуктов. Последнее свойство в сочетании с тем, что алюминий не разрушает витамины, позволяет широко использовать его в производстве посуды. Конструкции из алюминиевых сплавов часто используют в морской воде. Морские бакены, спасательные шлюпки, суда, баржи строятся из сплавов алюминия с 1930 г. В настоящее время длина корпусов кораблей из сплавов алюминия достигает 61 м. Существует опыт алюминиевых подземных трубопроводов, сплавы алюминия обладают высокой стойкостью к почвенной коррозии. В 1951 году на Аляске был построен трубопровод длиной 2,9 км. После 30 лет работы не было обнаружено ни одной течи или серьёзного повреждения из-за коррозии.
В 1865 г. известный русский химик Н.Н. Бекетов открыл метод восстановления металлов с помощью алюминия, получивший название алюминотермии. Сущность метода состоит в том, что при поджигании смеси окислов многих металлов с элементарным алюминием происходит восстановление этих металлов. Если окисел взят в избытке, то полученный металл будет почти свободным от примеси элемента №13. Этим методом сейчас широко пользуются при получении хрома, ванадия, марганца.
Для получения алюминия электролизом необходим криолит. Этот минерал, внешне похожий на лед, позволяет намного снизить температуру плавления глинозема – сырья для производства алюминия. Состав криолита 3NaF · AlF3. Единственное крупное месторождение этого минерала почти исчерпано, и можно сказать, что алюминиевая промышленность мира работает сейчас на синтетическом криолите. В нашей стране первые попытки получить искусственный криолит сделаны еще в 1924 г. В 1933 г. неподалеку от Свердловска вступил в строй первый криолитовый завод. Существуют два основных способа производства этого минерала – кислотный и щелочной, первый используется шире. В этом случае сырьем служит плавиковый шпат СаF2, который обрабатывают серной кислотой и получают фтористый водород. Растворив в воде, его превращают в плавиковую кислоту, которая взаимодействует с гидроокисью алюминия. Полученную фторалюмниевую кислоту H3AlF6 централизуют содой. В осадок выпадает мало растворимый в воде криолит.
При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета «Сатурн» сжигает за время полета 36 т алюминиевого порошка. Идею использования металлов в качестве компонента ракетного топлива впервые высказал Ф.А. Цандер.
Алюминий в большом объёме используется в строительстве в виде
облицовочных панелей, дверей, оконных рам, электрических кабелей.
Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. При частом намокании, если поверхность алюминиевых изделий не была дополнительно обработана, он может темнеть, вплоть до почернения в промышленных городах с большим содержанием окислителей в воздухе. Для избежания этого выпускаются специальные сплавы для получения блестящих поверхностей путём блестящего анодирования - нанесения на поверхность металла оксидной плёнки. При этом поверхности можно придавать множество цветов и
оттенков. Например, сплавы алюминия с кремнием позволяют получить гамму оттенков от серого до чёрного. Золотой цвет имеют сплавы алюминия с хромом.
Промышленный алюминий выпускается в виде двух видов сплавов литейных, детали из которых изготавливаются литьём, и деформационные - сплавы, выпускаемые в виде деформируемых полуфабрикатов - листов, фольги, плит, профилей, проволоки. Отливки из алюминиевых сплавов получают всеми возможными способами литья. Наиболее распространено литьё под давлением, в кокиль и в песчано - глинистые формы. При изготовлении небольших партий применяется литьё в гипсовые комбинированные формы и литьё по выплавляемым моделям. Из литейных сплавов изготавливают литые роторы электромоторов, литые детали летательных аппаратов и др.
Деформируемые сплавы используются в автомобильном производстве для
внутренней отделки, бамперов, панелей кузовов и деталей интерьера; в
строительстве как отделочный материал; в летательных аппаратах и др.
В промышленности используются также и алюминиевые порошки. Применяются в металлургической промышленности: в алюминотермии, в качестве легирующих добавок, для изготовления полуфабрикатов путём прессования и спекания. Этим методом получают очень прочные детали (шестерни, втулки и др.). Также порошки используются в химии для получения соединений алюминия и в качестве катализатора (например, при производстве этилена и ацетона). Учитывая высокую реакционную способность алюминия, особенно в виде порошка, его используют во взрывчатых веществах.
Учитывая высокую стойкость алюминия к окислению, порошок используются в качестве пигмента в покрытиях для окраски оборудования, крыш, бумаги в полиграфии, блестящих поверхностей панелей автомобилей. Также слоем алюминия покрывают стальные и чугунные изделия во избежание их коррозии.
Уже сейчас трудно найти отрасль промышленности, где бы не использовался алюминий или его сплавы - от микроэлектроники до тяжёлой металлургии. Это обуславливается хорошими механическими качествами, лёгкостью, малой температурой плавления, что облегчает обработку, высоким внешними качествами, особенно после специальной обработки. Учитывая перечисленные и многие другие физические и химические свойства алюминия, его неисчерпаемое количество в земной коре, можно сказать, что алюминий - один из самых перспективных материалов будущего.
Список используемой литературы.
1. Алюминиевые сплавы. Применение алюминиевых сплавов. Справочное
руководство. Редакционная коллегия И.В. Горынин и др. Москва
«Металлургия»,1978.
2. Алюминий. Свойства и физическое металловедение. Справочник.
Дж.Е.Хэтч. Москва, «Металлургия», 1989.
3. Алюминий. Н.Г.Ключников, А.Ф.Колодцев. Уч.пед.гиз, 1958.