Реферат Выводы из суждений
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Выводы из суждений.
Умозаключения строятся не только из простых, но и из сложных суждений. Широко используются умозаключения, посылками которых являются условные и разделительные суждения, выступающие в разных сочетаниях друг с другом или с категорическими суждениями. К ним относятся чисто условное, условно-категорическое, разделительно- категорическое и условно-разделительное умозаключения.
Особенность этих умозаключений состоит в том, что выведение заключения из посылок определяется не отношениями между терминами, как в категорическом силлогизме, а характером логической связи между суждениями. Поэтому при анализе посылок их субъектно-предикатная структура не учитывается.
Видами дедуктивных умозаключений являются также сокращенные, сложные и сложносокращенные силлогизмы.
Чисто условное и условно-категорическое умозаключения
Чисто условное умозаключение
Чисто условным называется умозаключение, обе посылки которого являются условными суждениями.Например:
Если изобретение создано совместным творческим трудом нескольких граждан (а), все они признаются соавторами изобретения (b)
Если они признаются соавторами изобретения (b), то порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (с).
Если изобретение создано совместным творческим трудом нескольких граждан (а), та порядок пользования правами на изобретение, созданное в соавторстве, определяется соглашением между соавторами (с).
В приведенном примере обе посылки -- условные суждения, причем следствие первой посылки является основанием второй (b), из которого, в свою очередь, вытекает некоторое следствие (с). Общая часть двух посылок (b) позволяет связать основание первой (а) и следствие второй (с). Поэтому заключение также выражается в форме условного суждения.
Схема чисто условного умозаключения:
Вывод в чисто условном умозаключении основывается на правиле: следствие следствия есть следствие основания.
Умозаключение, в котором заключение получается из двух условных посылок, относится к простым. Однако заключение может следовать из большего числа посылок, которые образуют цепь условных суждений. Такие умозаключения называются сложными.
Условно-категорическое умозаключение
Условно-категорическим называется умозаключение, в котором одна из посылок -- условное, а другая посылка и заключение -- категорические суждения.
Рассмотрим пример:
Первая посылка -- условное суждение, выражающее связь основания (а) и следствия (b). Вторая посылка -- категорическое суждение, в котором утверждается истинность основания (а): иск предъявлен недееспособным лицом. Признав истинность основания, мы признаем истинность следствия (b): суд оставляет иск без рассмотрения.
Это умозаключение представляет собой одну из разновидностей условно-категорического силлогизма -- утверждающий модус (modus ponens), в котором посылка, выраженная категорическим суждением, утверждает истинность основания, а заключение утверждает истинность следствия; рассуждение направлено от утверждения основания к утверждению следствия.
Утверждающий модус дает достоверные выводы. Он имеет схему:
Другим модусом, дающим достоверные заключения, является отрицающий модус (modus tollens), в котором посылка, выраженная категорическим суждением, отрицает истинность следствия, а заключение отрицает истинность основания. Рассуждение направлено от отрицания следствия к отрицанию основания. Например:
Нетрудно установить, что возможны еще две разновидности условно-категорического силлогизма.
(3)Посылка, выраженная категорическим суждением, отрицает истинность основания, заключение отрицает истинность следствия. Рассуждение направлено от отрицания основания к отрицанию следствия, т.е.:
Однако заключение по данному модусу не будет достоверным. Так, если в приведенном примере основание условной посылки отрицается (неверно, что иск предъявлен недееспособным лицом), нельзя с достоверностью отрицать истинность следствия (неверно, что суд оставляет иск без рассмотрения). Суд может оставить иск без рассмотрения и по другим обстоятельствам, например в результате истечения срока исковой давности.
(4) Посылка, выраженная категорическим суждением, утверждает истинность следствия, заключение утверждает истинность основания. Рассуждение направлено от утверждения следствия к утверждению основания, т.е.:
Заключение по данному модусу также не будет достоверным. Утверждение следствия (суд оставляет иск без рассмотрения) не влечет с необходимостью истинность основания: суд может оставить иск без рассмотрения не только в результате недееспособности истца, но и по другим причинам.
Итак, из четырех модусов условно-категорического умозаключения, исчерпывающих все возможные комбинации посылок, достоверные заключения дают два: утверждающий (modus ponens) (1) и отрицающий (modus tollens) (2). Они выражают законь! логики и называются правильными модусами условно-категорического умозаключения. Эти модусы подчиняются правилу: утверждение основания ведет к утверждению следствия и отрицание следствия -- к отрицанию основания. Два других модуса (3 и 4) достоверных заключений не дают. Они называются неправильными модусами и подчиняются правилу: отрицание основания не ведет с необходимостью к отрицанию следствия и утверждение следствия не ведет с необходимостью к утверждению основания.
Необходимость вывода по утверждающему и отрицающему модусам можно показать в помощью таблиц истинности.
Истинность импликации (столбик 3) зависит от истинности антецедента (основания) (1) и консеквента (следствия) (2). Импликация считается ложной тогда и только тогда, когда антецедент истинен, а консеквент ложен (2-я строка таблицы). Во всех остальных случаях импликация истинна. Истинность или ложность конъюнкции (4-й столбик) также зависит от составляющих ее членов (3 и 1).
Конъюнкция истинна тогда и только тогда, когда истинны оба ее члена (1-я строка таблицы).
Теперь установим истинность импликации (5-й столбик таблицы -- утверждающий модус). Так как импликация антецедента (4) и консеквента (2) не содержит случая, когда антецедент истинен, а консеквент ложен, то импликация всегда истинна. Следовательно, высказывание ((р>q)р)>q является логическим законом. Отрицающий модус (рис. 2).
В столбиках 1 и 3, 2 и 4 показано, что если одно высказывание ложно, то его отрицание истинно. Импликация р и q (1 и 2) ложна только в одном случае (2-я строка таблицы) -- столбик 5. Конъюнкция (столбик 6) высказываний (p > q) и ?|q (5 и 4) истинна только в одном случае (4-я строка таблицы). Импликация ((p>q) ?|q) и ?|р (6 и 3) всегда истинна, так как не содержит случая, когда антецедент истинен, а консеквент ложен. Следовательно, высказывание ((p>q)?|q)>?|p является логическим законом.
С помощью таблиц истинности можно показать недостоверность выводов по неправильным модусам.
При анализе условно-категорического умозаключения нужно иметь в виду, что основание и следствие большей посылки может быть как утвердительным, так и отрицательным суждением: p>q; ?|p>q; p>?|q; ?|p>?|q. Например:
Следствие условной посылки -- отрицательное суждение, категорическая посылка (утвердительное суждение) утверждает истинность основания, заключение (отрицательное суждение) утверждает истинность следствия.
В символической записи:
Возможны и другие разновидности модусов.
Иногда в рассуждениях используются условно-категорические умозаключения с выделяющим условным (эквивалентным) суждением (если, и только если а, то b).
В символической записи: p q, где -- знак эквивалентности. В таких умозаключениях достоверные заключения получаются по всем четырем модусам:
Рассмотрим для примера выделяющее условное суждение: «Если лицо виновно в совершении преступления, то оно подлежит уголовной ответственности». Нетрудно установить, что достоверное заключение получается по любому из приведенных модусов.
Разделительно-категорическое умозаключение
Разделительно-категорическим называется умозаключение, в котором одна из посылок -- разделительное, а другая посылка и заключение -- категорические суждения.
Простые суждения, из которых состоит разделительное (дизъюнктивное) суждение, называются членами дизъюнкции или дизъюнктами. Например, разделительное суждение «Облигации могут быть предъявительскими или именными» состоит из двух суждений -- дизъюнктов: «Облигации могут быть предъявительскими» и «Облигации могут быть именными», соединенных логическим союзом «или».
Утверждая один член дизъюнкции, мы с необходимостью должны отрицать другой, и отрицая один из них -- утверждать другой. В соответствии с этим различают два модуса разделительно-категорического умозаключения: утверждающе-отрицающий и отрицающе-утверждающий.
Схема утверждающе-отрицающего модуса:
В утверждающе-отрицающем модусе (modus ponendo tollens) меньшая посылка -- категорическое суждение -- утверждает один член дизъюнкции, заключение -- также категорическое суждение -- отрицает другой ее член. Например:
Заключение по этому модусу всегда достоверно, если соблюдается правило: большая посылка должна быть исключающе-разделительным суждением, или суждением строгой дизъюнкции. Если это правило не соблюдается, достоверного заключения получить нельзя. В самом деле, из посылок «Кражу совершил К или Л» и «Кража совершена К» заключение «Л кражу не совершал» с необходимостью не следует. Возможно, что Л также причастен к совершению кражи, является соучастником К.
В отрицающе-утверждающем модусе (modus tollendo ponens) меньшая посылка отрицает один дизъюнкт, заключение утверждает другой. Например:
Схема отрицающе-утверждающего модуса:
В символической записи:
где < ... > -- символ закрытой дизъюнкции.
Утвердительный вывод получен посредством отрицания: отрицая один дизъюнкт, мы утверждаем другой.
Заключение по этому модусу всегда достоверно, если соблюдается правило: в большей посылке должны быть перечислены все возможные суждения -- дизъюнкты, иначе говоря, большая посылка должна быть полным (закрытым) дизъюнктивным высказыванием. Применяя неполное (открытое) дизъюнктивное высказывание, достоверного заключения получить нельзя. Например:
Однако это заключение может оказаться ложным, так как в большей посылке учтены не все возможные виды сде-Лб1: посылка представляет собой неполное, или открытое, дизъюнктивное высказывание (сделка может быть и односторонней, для совершения которой достаточно изъявления воли одного лица -- выдача доверенности, составление завещания, отказ от наследства и т.п.).
Разделительная посылка может включать не два, а три и больше членов дизъюнкции. Например, в процессе расследования причин пожара на складе следователь предположил, что пожар мог возникнуть либо вследствие неосторожного обращения с огнем (р), либо в результате самовоспламенения хранящихся на складе материалов (q), либо в результате поджога (r). В ходе расследования было установлено, что пожар возник вследствие неосторожного обращения с огнем (р). В этом случае все другие дизъюнкты отрицаются. Умозаключение принимает форму утверждающе-отрицающего модуса и строится по схеме:
Возможен и другой ход рассуждения. Допустим, предположения о том, что пожар возник вследствие неосторожного обращения с огнем или в результате самовоспламенения хранящихся на складе материалов не подтвердилось. В этом случае умозаключение примет форму отрицающе-утверждающего модуса и будет построено по схеме:
Заключение будет истинным, если в условной посылке учтены все возможные случаи.
Разделительно-категорическое умозаключение находит широкое применение в судебно-следственной практике, особенно при построении и проверке следственных версий.
Условно-разделительное умозаключение
Умозаключение, в мотором одна посылка условное, а другая -- разделительное суждение, называется условно-разделительным или лемматическим.
Разделительное суждение может содержать две, три и большее число альтернатив, поэтому лемматические умозаключения делятся на дилеммы (две альтернативы), трилеммы (три альтернативы) и т. д.
Рассмотрим на примере дилеммы структуру и виды условно-разделительного умозаключения. Различают два вида дилемм: конструктивную (созидательную) и деструктивную (разрушительную), каждая из которых делится на простую и сложную.
В простой конструктивной дилемме условная посылка содержит два основания, из которых вытекает одно и то же следствие. Разделительная посылка утверждает оба возможных основания, заключение утверждает следствие. Рассуждение направлено от утверждения истинности оснований к утверждению истинности следствия.
Схема простой конструктивной дилеммы:
Пример:
Если обвиняемый виновен в заведомо незаконном аресте (а), то он подлежит уголовной ответственности за преступление против правосудия (с); если он виновен в заведомо незаконном задержании (b), то он также подлежит уголовной ответственности за преступление против правосудия (с). Обвиняемый виновен или в заведомо незаконном аресте (а), или в заведомо незаконном задержании (b)
Обвиняемый подлежит уголовной ответственности за преступление против правосудия (с)
В сложной конструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка утверждает оба возможных следствия. Рассуждение направлено от утверждения истинности оснований к утверждению истинности следствий.
Схема сложной конструктивной дилеммы:
Пример:
Если сберегательный сертификат является предъявительским "с (а), то он передается другому лицу путем вручения (b); если он является именным (с), то передается в порядке, установленном для уступки требований (d). Но сберегательный сертификат может быть предъявительским (а) или именным (с)
Сберегательный сертификат передается другому лицу путем вручения (b) или в порядке, установленном для уступки требований(d)
В простой деструктивной дилемме условная посылка содержит одно основание, из которого вытекает два возможных следствия. Разделительная посылка отрицает оба следствия, заключение отрицает основание. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности основания.
Схема простой деструктивной дилеммы:
Пример:
Если Н -- подозреваемый (а), значит, он или задержан по подозрению в совершении преступления (b), или является лицом, к которому применена мера пресечения до предъявления обвинения (с)
Н не был задержан по подозрению в совершении преступления (не -b) или он не является лицом, к которому применена мера пресечения до предъявления обвинения (не - с).
Н не является подозреваемым (не - а) в сложной деструктивной дилемме условная посылка содержит два основания и два следствия. Разделительная посылка отрицает оба следствия, заключение отрицает оба основания. Рассуждение направлено от отрицания истинности следствий к отрицанию истинности оснований.
Схема сложной деструктивной дилеммы:
Пример:
Если предприятие является арендным (а), то оно осуществлю предпринимательскую деятельность на основе взятого им в аренду имущественного комплекса (b); если оно является коллективным (с), то осуществляет такую деятельность на основе находящегося в его собственности имущества (d) Данное предприятие не осуществляет свою деятельность ни на основе взятого в аренду имущественного комплекса (не - b), ни на основе находящегося в его собственности имущества (не - d). Данное предприятие не арендное (не - а) или не коллективное (не - с)
Сокращенный силлогизм (энтимема)
Силлогизм, в котором выражены все его части -- обе посылки и заключение, называется полным. Такие силлогизмы были рассмотрены в предыдущих разделах. Однако на практике чаще используются силлогизмы, в которых одна из посылок или заключение явно не выражаются, а подразумеваются.
Силлогизм с пропущенной посылкой или заключением называется сокращенным силлогизмом, или энтимемой.
Широко используются энтимемы простого категорического силлогизма, особенно выводы по первой фигуре. Например: «Николаев -- студент, поэтому он обязан сдавать экзамены». Здесь пропущена большая посылка: «Все студенты обязаны сдавать экзамены». Она представляет собой общеизвестное положение, формулировать которое необязательно.
Полный силлогизм строится по 1-й фигуре:
Пропущенной может быть не только большая, но и меньшая посылка, а также заключение: «Все студенты обязаны сдавать экзамены, а Николаев -- студент» или: «Все студенты обязаны сдавать экзамены, значит, и Николаев обязан сдавать экзамены». Пропущенные части силлогизма подразумеваются.
В зависимости от того, какая часть силлогизма пропущена, различают три вида энтимемы: с пропущенной большей посылкой, с пропущенной меньшей посылкой и с пропущенным заключением.
Умозаключение в форме энтимемы может быть построено и по 2-й фигуре; по 3-й фигуре оно строится редко.
Форму энтимемы принимают также умозаключения, посылками которых являются условные и разделительные суждения.
Рассмотрим наиболее распространенные виды энтимем.
Условно-категорический силлогизм с пропущенной большей посылкой: «Уголовное дело не может быть возбуждено, так как событие преступления не имело места».
Здесь пропущена большая посылка -- условное суждение «Если событие преступления не имело места, то уголовное дело не может быть возбуждено». Она содержит известное положение Уголовно-процессуального кодекса, которое подразумевается.
Разделительно-категорический силлогизм с опущенной большей посылкой: «По данному делу не может быть вынесен оправдательный приговор, он должен быть обвинительным».
Большая посылка -- разделительное суждение «По данному делу может быть вынесен либо оправдательный, либо обвинительный приговор» -- не формулируется.
Разделительно-категорический силлогизм с опущенным заключением: «Смерть произошла либо в результате убийства, либо в результате самоубийства, либо в результате несчастного случая, либо в силу естественных причин. Смерть произошла в результате несчастного случая».
Заключение, отрицающее все другие альтернативы, обычно не формулируется.
Использование сокращенных силлогизмов обусловлено тем, что пропущенная посылка или заключение либо содержит известное положение, которое не нуждается в устном или письменном выражении, либо в контексте выраженных частей умозаключения она легко подразумевается. Именно поэтому рассуждение протекает, как правило, в форме энтимем. Но, поскольку в энтимеме выражены не все части умозаключения, скрывающуюся в ней ошибку обнаружить труднее, чем в полном умозаключении. Поэтому для проверки правильности рассуждения следует найти пропущенные части умозаключения и восстановить энтимему в полный силлогизм.
Сложные и сложносокращенные силлогизмы
В процессе рассуждения простые силлогизмы выступают в логической связи друг с другом, образуя цепь силлогизмов, в которой заключение предшествующего силлогизма становится посылкой последующего. Предшествующий силлогизм называется просиллогизмом, последующий -- эписиллогизмом
Соединение простых силлогизмов, в котором заключение предшествующего силлогизма (просиллогизма) становится посылкой последующего (эписиллогизма) называется сложным силлогизмом, или полисиллогизмом.
Различают прогрессивный и регрессивный полисиллогизмы. В прогрессивном полисиллогизме заключение просиллогизма становится большей посылкой эписиллогизма.
В регрессивном полисиллогизме заключение просиллогизма становится меньшей посылкой эписиллогизма. Например:
Оба приведенных примера представляют собой соединение двух простых категорических силлогизмов, построенных по модусу ААА 1-й фигуры. Однако полисиллогизм может быть соединением большего числа простых силлогизмов, простроенных по разным модусам разных фигур. Цепь силлогизмов может включить в себя как прогрессивную, так и регрессивную связь.
Сложными могут быть чисто условные силлогизмы, которые имеют схему:
В символической записи:
Из схемы видно, что, как и в простом чисто условном умозаключении, заключение представляет собой импликативную связь основания первой посылки со следствием последней.
В процессе рассуждения полисиллогизм принимает обычно сокращенную форму; некоторые из его посылок опускаются. Полисиллогизм, в котором пропущены некоторые посылки, называется соритом. Различают два вида соритов:
1. Прогрессивный полисиллогизм с пропущенными большими посылками эписиллогизмов. Например:
К сложносокращенным силлогизмам относится также эпихейрема. Эпихейремой называется сложносокращенный силлогизм, обе посылки которого являются энтимемами.
Например:
Развернем посылки эпихейремы в полные силлогизмы. Для этого восстановим в полный силлогизм сначала 1-ю энтимему:
Как видим, первую посылку эпихейремы составляют заключение и меньшая посылка силлогизма. Теперь восстановим 2-ю энтимему.
Вторую посылку эпихейремы также составляют заключение и меньшая посылка силлогизма.
Заключение эпихейремы получено из заключений 1-го и 2-го силлогизмов:
Развертывание эпихейремы в полисиллогизм позволяет проверить правильность рассуждения, избегать логических ошибок, которые могут остаться незамеченными в эпихейреме.
Понятие о логике высказываний
Современная символическая логика для анализа дедуктивных рассуждений строит особые логические системы; одна из них называется логикой высказываний или пропозициональной логикой, другая -- логикой предикатов. Рассмотрим кратко принципы построения логики высказываний.
Логика высказываний -- это логическая система, которая анализирует процессы рассуждения, основанные на характере связей между простыми суждениями, но без учета их внутренней структуры.
Язык логики высказываний включает: алфавит, определение правильно построенных выражений, интерпретацию.
Список литературы.
1. Жеребкін В.Є. Логіка. - Х.: Основа, 1998.
2. Кириллов В.Н., Орлов Г.А. Упражнения по логике. - М.: МЦУПЛ, 1999.
3. Арутюнов В.Х., Мішин В.М., Кирик Д.П. Логіка. - К.: КНЕУ, 2000.
4. Орендарчук Г.О. Основи логіки. - Тернопіль: СМП “Астон”, 2001.
5. Рузавин Г.Н. Логика. - М.: ЮНИТИ, 2002.