Реферат

Реферат Композиционные материалы материалы будущего

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025



 1. Композиционные материалы – материалы будущего.

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много разпревышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. Упервых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемымизначениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

2. Типы композиционных материалов.
2.1. Композиционные материалы с металлической матрицей.


Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

2.2. Композиционные материалы с неметаллической матрицей.

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.
Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ейформу. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.


Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.


Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон,тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композиционные материалы классифицируют настекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты иоргановолокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слоисобираются в пластины. Свойства получаются анизотропными. Для работыматериала в изделии важно учитывать направление действующих нагрузок. Можносоздать материалы как с изотропными, так и с анизотропными свойствами.
Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.


Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.


Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивлениесдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.


3. Классификация композиционных материалов.
3.1. Волокнистые композиционные материалы.


Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 10 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокондолжны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.


Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модульупругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных ивысокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.

Композиционные материалы на металлической основе обладают высокойпрочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, доборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.

3.2. Дисперсно-упрочненные композиционные материалы.

В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.


Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов иредкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т [pic]. В связи с этимтакие материалы чаще применяют как жаропрочные. Дисперсно-упрочненныекомпозиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия – САП(спеченный алюминиевый порошок).

Плотность этих материалов равна плотности алюминия, они не уступают ему покоррозионной стойкости и даже могут заменять титан и коррозионно-стойкиестали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и САП-2 при 500 °С составляет 45-55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердыйраствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применениеполучили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительностивыдержки при данной температуре.


3.3. Стекловолокниты.

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качественаполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствиевлияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, сметаллической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и дажеволокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют дляизготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качествесвязующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпусаприборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательносклеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.

Стекловолокниты могут работать при температурах от –60 до 200 °С, атакже в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.


3.4. Карбоволокниты.

Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в видеуглеродных волокон (карбоволокон).

Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительнойсредах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим
(низкая поверхностная энергия), поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержаниюкарбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризациянитевидных кристаллов TiO[pic], AlN и Si[pic]N[pic], что дает увеличениемежслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.


Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углероднойлентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и
КМУ-2л на основе полиимидного связующего можно применять при температуре до
300 °С.


Карбоволокниты отличаются высоким статистическим и динамическимсопротивлением усталости, сохраняют это свойство при нормальной и оченьнизкой температуре (высокая теплопроводность волокна предотвращаетсаморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения [pic] и Епочти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чемтеплопроводность стеклопластиков. Они имеют следующие электрическиесвойства: [pic] = 0,0024-0,0034 Ом·см (вдоль волокон); ? = 10 и tg =0,001 (при частоте тока 10[pic] Гц).

Карбостекловолокниты содержат наряду с угольными стеклянныеволокна, что удешевляет материал.

3.5. Карбоволокниты с углеродной матриццей.

Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительнойатмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродныхматериалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенномрежиме (температуре 1100 °С и остаточном давлении 2660 Па) метанразлагается и образующийся пиролитический углерод осаждается на волокнахупрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочностьсцепления с углеродным волокном. В связи с этим композиционный материалобладает высокими механическими и абляционными свойствами, стойкостью ктермическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениямпрочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200
°С, на воздухе окисляется при 450 °С и требует защитного покрытия.
Коэффициент трения одного карбоволокнита с углеродной матрицей по другомувысок (0,35-0,45), а износ мал (0,7-1 мкм на тормажение).


3.6. Бороволокниты.

Бороволокниты представляют собой композиции из полимерногосвязующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге исрезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борныхволокон обеспечивает высокую прочность при сдвиге на границе раздела сматрицей.

Помимо непрерывного борного волокна применяют комплексныеборостеклониты, в которых несколько параллельных борных волокон оплетаютсястеклонитью, предающей формоустойчивость. Применение боростеклонитейоблегчает технологический процесс изготовления материала.

В качестве матриц для получения боровлокнитов используютмодифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать притемпературе не свыше 100 °С; КМБ-2к работоспособен при 300 °С.


Бороволокниты обладают высокими сопротивлениями усталости, онистойки к воздействию радиации, воды, органических растворителей и горючесмазочных материалов.

3.7. Органоволокниты.

Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в видесинтетических волокон. Такие материалы обладают малой массой, сравнительновысокими удельной прочностью и жесткостью, стабильны при действиизнакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; онималочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурныхкоэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическоевзаимодействие между ними. Структура материала бездефектна. Пористось непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильностьмеханических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочностьпри сжатии и высокая ползучесть (особенно для эластичных волокон).


Органоволокниты устойчивы в агрессивных средах и во влажномтропическом климате; диэлектрические свойства высокие, а теплопроводностьнизкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.

В комбинированных материалах наряду с синтетическими волокнамиприменяют минеральные (стеклянные, карбоволокна и бороволокна). Такиематериалы обладают большей прочностью и жесткостью.

4. Экономическая эффективность применения композиционных материалов.

Области применения композиционных материалов не ограничены. Ониприменяются в авиации для высоконагруженных деталей самолетов (обшивки,лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора итурбины и т. д.), в космической технике для узлов силовых конструкцийаппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементысборных конструкций высотных сооружений и т. д.) и в других областяхнародного хозяйства.

Применение композиционных материалов обеспечивает новыйкачественный скачек в увеличении мощности двигателей, энергетических итранспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из композиционныхматериалов достаточно хорошо отработана.

Композиционные материалы с неметаллической матрицей, а именнополимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники,панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульныекарбоволокниты применяют для изготовления деталей авиационной техники,аппаратуры для химической промышленности, в рентгеновском оборудовании идругом.

Карбоволокниты с углеродной матрицей заменяют различные типыграфитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.

Изделия из бороволокнитов применяют в авиационной и космическойтехнике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).

Органоволокниты применяют в качестве изоляционного иконструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.                                                                                                 


 Композиционные материалы, области применения 

 

 

Высокая коррозионная стойкость, способность к восприятию ударных нагрузок, отличное качество поверхности, красивый внешний вид обусловили широкое применение композиционных материалов практически во всех отраслях промышленности.

Видное место занимают эти материалы в производстве изделий для автомобильного и городского транспорта. Из них изготавливают корпуса легковых автомобилей, автобусов, детали внутреннего интерьера, кабины грузовиков, баки для горючего, цистерны для перевозки жидких и сыпучих грузов, корпуса и детали внутреннего интерьера трамваев и автобусов.

 

http://www.naftaros.ru/articles/20080208182953-5198.bmp

http://www.naftaros.ru/articles/20080208182848-4051.bmp

http://www.naftaros.ru/articles/20080208182833-7915.bmp

http://www.naftaros.ru/articles/20080208182940-7147.bmp

 

Широкое применение нашли композиционные материалы в авиационной и ракетно-космической технике, где используются такие их свойства, как высокая удельная прочность и стойкость к воздействию высоких температур, стойкость к вибрационным нагрузкам, малый удельный вес. Из этих материалов изготавливаются корпусные детали и детали внутреннего интерьера.

 

 

http://www.naftaros.ru/articles/20080208183305-4593.bmp

http://www.naftaros.ru/articles/20080208183340-4112.bmp 

 http://www.naftaros.ru/articles/20080208183432-5209.bmp


Очень широко композиционные материалы применяются в области
 судостроения. Уникальные свойства композиционных материалов позволяют изготавливать высокопрочные, легкие корпуса катеров, яхт, шлюпок. 
Из композиционных материалов также изготавливаются спасательные шлюпки для танкеров, перевозящих нефтепродукты. Такие шлюпки способны вынести экипаж судна из зоны разлившейся горящей нефти в случае аварии. Этой возможности позволили достигнуть уникальные свойства применяемых материалов, их высокая теплоизоляция и огнестойкость.


 

 http://www.naftaros.ru/articles/20080208183926-1563.bmp

 http://www.naftaros.ru/articles/20080208183936-7239.bmp

 http://www.naftaros.ru/articles/20080208183944-8657.bmp

 http://www.naftaros.ru/articles/20080208183954-6540.bmp


Развитие промышленности композитов в районе Персидского залива происходит чрезвычайно быстро. Композиционные материалы применены в одном из наиболее престижных проектов в регионе -
 строительстве гостиницы Jumeirah Reach Tower. Гостиница Jumeirah Reach Tower, строительство которой уже закончено в Дубаи, как объявляют, является самым высоким зданием гостиницы в мире. Ее высота 321 метр, это выше, чем Эйфелева башня в Париже. Приблизительно 33 000 квадратных метров сэндвичевых панелей соединяют гостиничные номера и гиганский, почти 200 метров высотой атриум. Панели произведены из композиционных материалов. Огнестойкая смола и гелькоут были спроектированы и полностью проверены для использования в этом проекте. Рекомендация и опыт этого проекта, как ожидается, вызовет значительный интерес в строительной промышленности.

 

http://www.naftaros.ru/articles/20080208184137-8274.bmp

 

В области железнодорожного транспорта композиционные материалы постепенно занимают лидирующее место благодаря своим великолепным свойствам. С каждым годом все больше компаний переходят на изготовление из композиционных материалов не только отдельных деталей, но и кузовов в целом. 

 

 http://www.naftaros.ru/articles/20080208184237-9219.bmp

 http://www.naftaros.ru/articles/20080208184252-8201.bmp

 

Настоящий переворот совершили композиционные материалы в области сельского хозяйства. Антикоррозионные свойства этих материалов позволяют применять их там, где не выдерживают другие материалы. Это элементы животноводческих ферм, емкости для хранения минеральных удобрений, отходов, сельскохозяйственных заготовок. Композиционные материалы используются для изготовления кузовов сельскохозяйственной техники. Это позволяет значительно сэкономить средства не только при производстве, но и в процессе эксплуатации, так как в межсезонье трактора, уборочные машины не требуют затрат на обслуживание кузовных деталей, а срок службы этих деталей намного больше. 

 

http://www.naftaros.ru/articles/20080208184437-6505.bmp

 

Одной из все более расширяющихся областей применения композиционных материалов является мостостроение. Использование стеклопластика открывает перспективный путь строительства мостов из новых материалов. Рассматриваемое строительство - мост длиной 40 метров, протянутый поперек одной из наиболее загруженных железных дорог в Дании. Изготовлен  первый композитный мост, специально разработанный, для создания железнодорожных переходов. Ключевым условием создания моста, для одной из наиболее загруженных железных дорог Дании, было то, что он должен был быть установлен в самые сжатые сроки. В то же время сооружение должно было соответствоватьопределенным практическим и эстетическим критериям. Мост был смонтирован за 16 часов. Работа была выполнена ночью. Мост состоял из трех компонентов, которые были установлены на опоры с болтами - кстати, единственные элементы моста, требующие соединений. 

Композиционные материалы будут все больше и больше использоваться как Материал в наземном строительстве. Налицо многочисленные преимущества: мосты из композиционных материалов, которые требуют только косметического обслуживания в течение более чем 50 последующих лет. Подобный мост, построенный из стали весил бы 28 тонн и нуждался в замене некоторых частей каждые 25 лет. То же самое применимо и к железобетонному мосту, который весил бы 90 тонн. Одно из главных преимуществ конструкций из композитов, имеющих небольшую массу, состоит в том, что они требуют меньших, менее дорогих опор. Кроме того, они не подвержены коррозии. Мост разработан из стандартных профилей и может производиться по более низкой стоимости, чем аналогичный стальной или бетонный мост.

Новый сложный мост был построен в Швейцарских Альпах прошлой осенью. Этот мост состоит из двух элементов, весящих по 900 кг, которые были установлены при помощи вертолета. Элементы были склеены и соеденены болтами вместе. Мост, собранный из стали, едва ли смог бы транспортироваться вертолетом. Еще одно преимущество проекта состоит в том, что мост может быть легко демонтирован в случае весенних наводнений.

 

http://www.naftaros.ru/articles/20080208184722-6410.bmp 

http://www.naftaros.ru/articles/20080208184732-7718.bmp 



 

В оборонной промышленности композиционные материалы сыграли важную роль в стратегии и направлении новейших разработок. Так защитные каски, бронежилеты, традиционно изготавливаемые во всех странах многие годы из металла, в настоящее время также изготавливаются из композиционных материалов. Скоростные суда, транспортные корабли, самолеты невидимки, все это создано только благодаря использованию композиционных материалов, постоянному поиску новых материалов и технологий.

 

http://www.naftaros.ru/articles/20080208184923-6147.bmp

 

В очень большом количестве композиционные материалы используются в нефтеперерабатывающей промышленности. В настоящее время из этих материалов изготавливают элементы нефтяных платформ, трубы для нефте- и газопроводов. В этом году заканчивается строительство завода в Узбекистане по производству труб для нефте- и газопроводов. Мощность предприятия определяется исходя из объема потребления только огнестойкого ненасыщеного полиэфира в колличестве 6,5 тыс. тонн в год. 

 

 http://www.naftaros.ru/articles/20080208185058-7641.bmp

 http://www.naftaros.ru/articles/20080208185114-4544.bmp

 

Лопасти и корпуса ветряных электростанций, трейлера, рефрежераторы, предметы бытового назначения, сантехника, искусственный мрамор, полимербетон, гидроизоляция тонелей метрополитенов, изолирующие накладки, сидения для транспорта и общественных мест, малые архитектурные формы, мебель, все это и многое другое в настоящее время производится из композиционных материалов.

КОМПЛЕКСНЫЙ ПОДХОД К ВЫЯВЛЕНИЮ ДЕФЕКТОВ МНОГОСЛОЙНЫХ КОНСТРУКЦИЙ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ

                 В.И. Завидей, Ю.Г. Васенев, С.Л. Ступаченко (ЗАО «Панатест», Москва)


 

     Представлены экспериментальные результаты применения современных тепловизионных систем серии ТН-9100  
и ультразвуковых импульсных дефектоскопов серии
 Masterscan 380 для выявления дефектов в конструкциях из композиционных материалов, используемых в авиационной промышленности и технике.

 

          В процессе отработки технологии и изготовления крупногабаритных изделий из композиционных материалов возникает необходимость проведения оперативного контроля значительных площадей конструкций, с последующим уточнением параметров выявленных дефектов (размера, глубины залегания и формы). 

            В данной работе рассмотрены возможности применения методов ИК-термографии и   ультразвукового метода контроля для решения рассматриваемой проблемы.

            В последние годы методы ИК-термографии рассматриваются как одно из перспективных направлений в технике неразрушающих испытаний изделий, в том числе и конструкций из композиционных материалов [1]. Практическое применение методов ИК-термографии в ряде случае затруднено и связано с необходимостью использования опытных специалистов для интерпретации результатов контроля и их анализа. В ряде работ рассмотрена возможность передачи функций анализа температурной информации и автоматизированного обнаружения дефектов, используя достаточно сложные алгоритмы теории распознавания образов [2]. Данные направления работ представляют значительный интерес, однако в настоящее время не вышли за рамки лабораторных исследований.
 


         Для выявления признаков наличия дефекта методом ИК-термографии необходимо выяснить может ли временное изменение температуры быть описано одномерным приближением для однородной среды или нет. Это позволяет провести упрощенный анализ и выявить признаки наличия дефектов по кривой изменения температур. 

         Кривая временного изменения температуры при наличии дефектов типа включений или расслоений с воздушными промежутками располагается выше кривой охлаждения изделия без дефектов [3]. Для включений с повышенной теплоемкостью, например, при увлажнении полостей расслоений, кривая временной зависимости охлаждения образца будет располагаться ниже кривой охлаждения образца в бездефектной зоне (рис 1).
    http://www.panatest.ru/panatest/uploads/KRIV.JPG

 Рис.1. Кривые охлаждения в зонах бездефектного (2) и дефектных (1,3) участков.

 

             Как видно из графиков, разность температур поверхности над дефектом, по сравнению с бездефектным участком, на начальном временном периоде увеличивается, а затем уменьшается. Как правило, превышение температуры для определенной глубины залегания дефекта имеет максимум или минимум для включений с отличными от основного материала теплофизическими свойствами.
 


             В области регулярного (установившегося) теплообмена, изменение температуры в двойных логарифмических координатах описывается линейной функцией. Для бездефектной области функция временного изменения температуры описывается линейной функцией с фиксированным отрицательным углом наклона, что следует из решения нестационарного уравнения теплопроводности для однородного полупространства.   Наличие дефекта изменяет скорость распространения тепловой волны так, что при наблюдении за температурой на поверхности изделия, дефекты обнаруживаются в виде зон с отличающейся (относительно бездефектных областей) температурой. Глубоко расположенные дефекты наблюдаются с большей задержкой по времени и уменьшенным температурным контрастом.

            Время от начала импульсного воздействия до обнаружения температурной аномалии пропорционально квадрату глубины залегания дефекта. Абсолютная величина температурного контраста изменяется во времени и примерно обратно пропорциональна  кубу глубины расположения дефекта от поверхности облучения и контроля. Длительность наблюдения проявления дефекта от начала температурного переходного процесса пропорциональна квадрату глубины залегания дефекта и обратно пропорциональна коэффициенту α температуропрводности материала [4].

          Для типичных композитных пластиковых материалов значение α ≈1·10-7м2/с (органопластики) и α ≈5·10-7м2/с (углепластики). Признаки расслоений с характерным размером, сопоставимым с глубиной залегания, обнаруживаются сравнительно легко при обеспечении необходимого импульсного энергетического воздействия на поверхность объекта контроля, или при остывании предварительно нагретого объекта в атмосфере.

           В данной работе исследования проводились на стеклопластиковых и углестеклопластиковых многослойных образцах толщиной 5…10мм, в которых были выполнены искусственные дефекты, ориентированные параллельно поверхности, так и фрагментов натурных конструкций с естественными технологическими дефектами типа расслоений. Диаметр искусственных дефектов в указанных образцах составлял от 3 до 20 мм. Глубина залегания дефектов составляла от 1 до 5 мм.

             В опытах использован тепловизор серии ТН-9100 фирмы NEC (Япония), с температурным разрешением ~0,05К. и ультразвуковой импульсный дефектоскоп типа Masterscan 380 фирмы Sonatest (Великобритания).
 


            Термограммы процесса остывания объекта получены в режиме отрицательного теплового воздействия (остывания предварительно равномерно нагретого фрагмента объекта в свободной атмосфере). Подобное тепловое воздействие наиболее близко моделирует тепловой переходный процесс в технологическом процессе изготовления изделий.       Характерные термограммы процесса свободного остывания фрагмента изделия из углестеклопластика приведены на рис.2, а из стеклопластика - на рис. 3.

http://www.panatest.ru/panatest/uploads/T1.jpg

Рис.2. Термограммы фрагмента конструкции из углестеклопластика. Область выявленного расслоения показана стрелкой.

 http://www.panatest.ru/panatest/uploads/T2.jpg

Рис. 3. Термограммы процесса остывания изделия из стеклопластика. Области выявленных расслоений показаны стрелками.
 


             Как видно из приведенных термограмм, дефекты надежно обнаруживаются без привлечения сложных методов обработки тепловых изображений. Из термограмм следует, что превышение температуры поверхности (в области максимального контраста) достигает ΔТ= 4°С, что более чем на порядок превышает предел температурного разрешения используемой тепловизионной системы.

            К достоинствам описанного подхода следует отнести возможность осуществления оперативного контроля состояния протяженных поверхностей в ходе технологического процесса в тех случаях, когда имеют место переходные тепловые режимы.
 


           Наряду с описанными преимуществами термографический метод контроля не свободен от недостатков, главным из которых является требование обеспечения оптического доступа к поверхности объекта, а также обеспечение однородности излучательных свойств и начальной температуры контролируемой поверхности. В ряде случаев отмеченные особенности можно преодолеть путем применения дифференциального анализа термограмм, а также применения дублирующих методов контроля, например, ультразвукового метода.
 


            Ультразвуковой контроль локализованных термографическим методом зон выполнялся дефектоскопом Masterscan 380, работающим в эхо-импульсном режиме на частоте 1 МГц, с применением прямого преобразователя раздельно-совмещенного типа. Для одновременного наблюдения дефектов (расслоений) по толщине контролируемого изделия, а также за качеством акустического контакта преобразователя, в приборе Masterscan 380 предусмотрено выделение временных строб-импульсов. Это обеспечивает выдачу сигнализации при появлении эхо-сигналов от дефектов в области первого строба, так и нарушение акустического контакта при пропадании донного импульса в область второго строба.
 


          Основной задачей ультразвукового контроля являлось подтверждение результатов обнаружения дефектов термографическим методом, а также точное определение глубины залегания расслоений. Данный вид контроля предполагается использовать при осуществлении технологического процесса изготовления конструкций из многослойных композитных материалов.
 


          Типичные изображения на экране дефектоскопа, полученные в бездефектной и дефектной зонах конструкции, приведены на рис. 4. Горизонтальные стробирующие сигналы 1 и 2, изображенные на экране дефектоскопа Masterscan 380 (рис 4 и рис.5), показывают области потенциального расположения дефекта (зона контроля) и донного эхо-сигнала для контроля качества акустического контакта.

 http://www.panatest.ru/panatest/uploads/13.jpghttp://www.panatest.ru/panatest/uploads/11.jpg

 Рис. 4. Изображение на экране дефектоскопа Masterscan 380:
 а)- бездефектная зона изделия из композиционного углестеклопластикового материала; б)-дефектная зона изделия.


 

         При наличии в дефектной зоне небольших по площади дефектов (непроклеев), расположенных на разной глубине (рис. 5,а), наряду с эхо-сигналами от дефектов отображается также донный эхо-сигнал. 
 
 http://www.panatest.ru/panatest/uploads/11%202.jpghttp://www.panatest.ru/panatest/uploads/14.jpg

 

Рис. 5. а) - отображение двух небольших по площади расслоений материала; 
б)- дефекты увеличенной площади: 1, 2 – строб-импульсы; 3- донный сигнал; 4-эхо- сигналы от дефектов.


 

           С увеличением площади непроклея пропадает донный сигнал и наблюдаются только эхо-сигналы от непроклеев (рис. 5 б).    Следует отметить, что при отсутствии акустического контакта ультразвукового преобразователя с контролируемым изделием, все эхо-сигналы отсутствуют.

         Макрошлиф дефектного участка, выявленного термографическим и подтвержденного ультразвуковым эхо-импульсным методами в конструкции из композиционного стеклопластикового материала, приведен на рис.6.
 

 http://www.panatest.ru/panatest/uploads/CHLEF.jpg

Рис. 6. Макрошлиф дефектного участка конструкции из стеклопластика, выявленного термографическим и ультразвуковым методами контроля.

 

         В результате исследований установлено, что эхо-импульсный ультразвуковой метод контроля прибором Masterscan 380 многослойных конструкций на основе стекло- и угле-пластиковых композитных материалов обеспечивает обнаружение более меньших по площади дефектов (расслоений, непроклеев), в сравнению с тепловым и теневым ультразвуковым методами контроля. Как и тепловой метод, ультразвуковой эхо- метод не требует двустороннего доступа к контролируемому объекту, что часто реализуется на практике.
 


         Таким образом, полученные результаты показывают на перспективность применения комбинированного подхода к контролю, сочетающего возможности оперативного контроля значительных площадей объекта термографическим методом, с последующим уточнением параметров выявленных дефектов (размера, глубины залегания и формы) ультразвуковым эхо-импульсным методом. 

         Тепловизоры серии ТН-9100 и ультразуковые импульсные дефектоскопы типа Masterscan 380 по своим техническим характеристикам позволяют обеспечить возможность достоверного обнаружение непроклеев и расслоений, при относительно низкой трудоемкости контроля крупногабаритных композиционных изделий, подобных лопастям вертолетных винтов и др.
 


ВЫВОДЫ

             Предложенный в работе подход, основанный на использовании нескольких методов диагностики, эффективен для дефектоскопии изделий непосредственно в ходе технологической цепи их производства, где требуется оперативная локализация наличия дефектных участков (непроклеев, расслоений). Определение основных характеристик дефектов (размера и глубины залегания) может быть произведено ультразвуковым методом локации. Необходимость решения указанных задач подобной постановки возникает как на этапе отработки технологии изготовления изделий, так и проведении стендовых испытаний конструкций. Близкие по характеру задачи связаны с обнаружением образовавшихся дефектов и увлажнений композиционных и сотовых конструкций в процессе эксплуатации авиационной техники.
 


            Предварительная проработка методических аспектов контроля, с учетом технологических особенностей изготовления изделий, является необходимым атрибутом успешного использования применяемых средств дефектоскопии.

 


МЕЖДУНАРОДНАЯ НАУЧНО-ПРАКТИЧЕСКАЯ КОНФЕРЕНЦИЯ 
«ПРИМЕНЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ В ГРАЖДАНСКОМ И ВОЕННОМ АВИАСТРОЕНИИ»


21 августа 2009 года «Союз производителей композитов» совместно с выставочной компанией «Мир-Экспо» в рамках IX Международного авиационно-космического салона МАКС-2009 в г. Жуковском на территории выставочного комплекса МАКС-2009проводят международную научно-практическую конференцию «Применение композиционных материалов в гражданском и военном авиастроении».

Конкурентоспособность российского авиапрома, тем более в условиях экономического кризиса, во многом определяется применением инновационных, конкурентных по цене, качеству и сроку службы материалов. Комплектующие авиационных аппаратов из композиционных материалов отличает высокая прочность, легкость, термостойкость, работоспособность при высокой влажности, способность поглощать радиоизлучения. Однако, одной из главных проблем широкого применения композиционных материалов в России является отсутствие грамотного и активного диалога между производителями и потребителями современных материалов.

В рамках конференции будут представлены последние достижения ведущих предприятий композиционной отрасли для авиационной промышленности. На конференции прозвучат доклады НПО «Стеклопластик», ФГУП "ВИАМ", ФГУП «ЦСКБ-Прогресс», ФГУП Центральный институт авиационного моторостроения им. П.И. Баранова, Бийский завод стеклопластиков, DuPont Science and Technologies, Airtech Europe S.A и другие.

Основные темы Конференции:
  • Свойства композиционных материалов (упруго-прочностные характеристики, радиопрозрачность, ультралегкость, срок службы).
  • Композиционные материалы в конструкциях, деталях и узлах летательных аппаратов.
  • Новые технологии применения.


Композиционные материалы

 

Композиционные материалы – материалы будущего

 

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много раз превышающей ее значения у обычных сегодня сплавов. При этом большое внимание будет уделяться уже известным механизмам закалки стали и старения алюминиевых сплавов, комбинациям этих известных механизмов с процессами формирования и многочисленными возможностями создания комбинированных материалов. Два перспективных пути открывают комбинированные материалы, усиленные либо волокнами, либо диспергированными твердыми частицами. У первых в неорганическую металлическую или органическую полимерную матрицу введены тончайшие высокопрочные волокна из стекла, углерода, бора, бериллия, стали или нитевидные монокристаллы. В результате такого комбинирования максимальная прочность сочетается с высоким модулем упругости и небольшой плотностью. Именно такими материалами будущего являются композиционные материалы.

Композиционный материал – конструкционный (металлический или неметаллический) материал, в котором имеются усиливающие его элементы ввиде нитей, волокон или хлопьев более прочного материала. Примеры композиционных материалов: пластик, армированный борными, углеродными, стеклянными волокнами, жгутами или тканями на их основе; алюминий, армированный нитями стали, бериллия. Комбинируя объемное содержание компонентов, можно получать композиционные материалы с требуемыми значениями прочности, жаропрочности, модуля упругости, абразивной стойкости, а также создавать композиции с необходимыми магнитными, диэлектрическими, радиопоглощающими и другими специальными свойствами.

 

Типы композиционных материалов

 

Композиционные материалы с металлической матрицей

 

Композиционные материалы состоят из металлической матрицы (чаще Al, Mg, Ni и их сплавы), упрочненной высокопрочными волокнами (волокнистые материалы) или тонкодисперсными тугоплавкими частицами, не растворяющимися в основном металле (дисперсно-упрочненные материалы). Металлическая матрица связывает волокна (дисперсные частицы) в единое целое. Волокно (дисперсные частицы) плюс связка (матрица), составляющие ту или иную композицию, получили название композиционные материалы.

 

Композиционные материалы с неметаллической матрицей

 

Композиционные материалы с неметаллической матрицей нашли широкое применение. В качестве неметаллических матриц используют полимерные, углеродные и керамические материалы. Из полимерных матриц наибольшее распространение получили эпоксидная, фенолоформальдегидная и полиамидная.

Угольные матрицы коксованные или пироуглеродные получают из синтетических полимеров, подвергнутых пиролизу. Матрица связывает композицию, придавая ей форму. Упрочнителями служат волокна: стеклянные, углеродные, борные, органические, на основе нитевидных кристаллов (оксидов, карбидов, боридов,нитридов и других), а также металлические (проволоки), обладающие высокой прочностью и жесткостью.

Свойства композиционных материалов зависят от состава компонентов,их сочетания, количественного соотношения и прочности связи между ними.
Армирующие материалы могут быть в виде волокон, жгутов, нитей, лент, многослойных тканей.


Содержание упрочнителя в ориентированных материалах составляет 60-80 об. %, в неориентированных (с дискретными волокнами и нитевидными кристаллами) – 20-30 об. %. Чем выше прочность и модуль упругости волокон, тем выше прочность и жесткость композиционного материала. Свойства матрицы определяют прочность композиции при сдвиги и сжатии и сопротивление усталостному разрушению.

По виду упрочнителя композиционные материалы классифицируют на стекловолокниты, карбоволокниты с углеродными волокнами, бороволокниты и органоволокниты.

В слоистых материалах волокна, нити, ленты, пропитанные связующим, укладываются параллельно друг другу в плоскости укладки. Плоские слои собираются в пластины. Свойства получаются анизотропными. Для работы материала в изделии важно учитывать направление действующих нагрузок. Можно создать материалы, как с изотропными, так и с анизотропными свойствами.

Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала.

Применяется укладка упрочнителей из трех, четырех и более нитей.
Наибольшее применение имеет структура из трех взаимно перпендикулярных нитей. Упрочнители могут располагаться в осевом, радиальном и окружном направлениях.


Трехмерные материалы могут быть любой толщины в виде блоков, цилиндров. Объемные ткани увеличивают прочность на отрыв и сопротивление сдвигу по сравнению со слоистыми. Система из четырех нитей строится путем разложения упрочнителя по диагоналям куба. Структура из четырех нитей равновесна, имеет повышенную жесткость при сдвиге в главных плоскостях.
Однако создание четырехнаправленных материалов сложнее, чем трех направленных.


 

Классификация композиционных материалов

 

Волокнистые композиционные материалы

Часто композиционный материал представляет собой слоистую структуру, в которой каждый слой армирован большим числом параллельных непрерывных волокон. Каждый слой можно армировать также непрерывными волокнами, сотканными в ткань, которая представляет собой исходную форму,по ширине и длине соответствующую конечному материалу. Нередко волокна сплетают в трехмерные структуры.

Композиционные материалы отличаются от обычных сплавов более высокими значениями временного сопротивления и предела выносливости (на 50 – 100 %), модуля упругости, коэффициента жесткости и пониженной склонностью к трещинообразованию. Применение композиционных материалов повышает жесткость конструкции при одновременном снижении ее металлоемкости.

Прочность композиционных (волокнистых) материалов определяется свойствами волокон; матрица в основном должна перераспределять напряжения между армирующими элементами. Поэтому прочность и модуль упругости волокон должны быть значительно больше, чем прочность и модуль упругости матрицы.
Жесткие армирующие волокна воспринимают напряжения, возникающие в композиции при нагружении, придают ей прочность и жесткость в направлении ориентации волокон.


Для упрочнения алюминия, магния и их сплавов применяют борные, а также волокна из тугоплавких соединений (карбидов, нитридов, боридов и оксидов), имеющих высокие прочность и модуль упругости. Нередко используют в качестве волокон проволоку из высокопрочных сталей.

Для армирования титана и его сплавов применяют молибденовую проволоку, волокна сапфира, карбида кремния и борида титана.

Повышение жаропрочности никелевых сплавов достигается армированием их вольфрамовой или молибденовой проволокой. Металлические волокна используют и в тех случаях, когда требуются высокие теплопроводность и электропроводимость. Перспективными упрочнителями для высокопрочных и высокомодульных волокнистых композиционных материалов являются нитевидные кристаллы из оксида и нитрида алюминия, карбида и нитрида кремния, карбидабора и др.

Композиционные материалы на металлической основе обладают высокой прочностью и жаропрочностью, в то же время они малопластичны. Однако волокна в композиционных материалах уменьшают скорость распространения трещин, зарождающихся в матрице, и практически полностью исчезает внезапное хрупкое разрушение. Отличительной особенностью волокнистых одноосных композиционных материалов являются анизотропия механических свойств вдоль и поперек волокон и малая чувствительность кконцентраторам напряжения.

Анизотропия свойств волокнистых композиционных материалов учитывается при конструировании деталей для оптимизации свойств путем согласования поля сопротивления с полями напряжения.

Армирование алюминиевых, магниевых и титановых сплавов непрерывными тугоплавкими волокнами бора, карбида кремния, диборида титана и оксида алюминия значительно повышает жаропрочность. Особенностью композиционных материалов является малая скорость разупрочнения во времени с повышением температуры.

Основным недостатком композиционных материалов с одно и двумерным армированием является низкое сопротивление межслойному сдвигу и поперечному обрыву. Этого лишены материалы с объемным армированием.

 

Дисперсно-упрочненные композиционные материалы

 

В отличие от волокнистых композиционных материалов в дисперсно-упрочненных композиционных материалах матрица является основным элементом,несущим нагрузку, а дисперсные частицы тормозят движение в ней дислокаций.
Высокая прочность достигается при размере частиц 10-500 нм при среднем расстоянии между ними 100-500нм и равномерном распределении их в матрице.
Прочность и жаропрочность в зависимости от объемного содержания упрочняющих фаз не подчиняются закону аддитивности. Оптимальное содержание второй фазы для различных металлов неодинаково, но обычно не превышает 5-10 об. %.


Использование в качестве упрочняющих фаз стабильных тугоплавких соединений (оксиды тория, гафния, иттрия, сложные соединения оксидов и редкоземельных металлов), нерастворяющихся в матричном металле, позволяетсохранить высокую прочность материала до 0,9-0,95 Т. В связи с этим такие материалы чаще применяют как жаропрочные. Дисперсно-упрочненные композиционные материалы могут быть получены на основе большинства применяемых в технике металлов и сплавов.

Наиболее широко используют сплавы на основе алюминия – САП (спеченный алюминиевый порошок).

Плотность этих материалов равна плотности алюминия, они не уступают ему по коррозионной стойкости и даже могут заменять титан и коррозионно-стойкие стали при работе в интервале температур 250-500 °С. По длительной прочности они превосходят деформируемые алюминиевые сплавы. Длительная прочность для сплавов САП-1 и

САП-2 при 500 °С составляет 45-55 МПа.

Большие перспективы у никелевых дисперсно-упрочненных материалов.
Наиболее высокую жаропрочность имеют сплавы на основе никеля с 2-3 об. % двуоксида тория или двуоксида гафния. Матрица этих сплавов обычно твердый раствор Ni + 20 % Cr, Ni + 15 % Mo, Ni + 20 % Cr и Mo. Широкое применение получили сплавы ВДУ-1 (никель, упрочненный двуокисью тория), ВДУ-2 (никель,упрочненный двуокисью гафния) и ВД-3 (матрица Ni +20 % Cr, упрочненная окисью тория). Эти сплавы обладают высокой жаропрочностью. Дисперсно-упрочненные композиционные материалы, так же как волокнистые, стойки к разупрочнению с повышением температуры и длительности выдержки при данной температуре.


 

Стекловолокниты

 

Стекловолокниты – это композиция, состоящая из синтетической смолы, являющейся связующим, и стекловолокнистого наполнителя. В качестве наполнителя применяют непрерывное или короткое стекловолокно. Прочность стекловолокна резко возрастает с уменьшением его диаметра (вследствие влияния неоднородностей и трещин, возникающих в толстых сечениях). Свойства стекловолокна зависят также от содержания в его составе щелочи; лучшие показатели у бесщелочных стекол алюмоборосиликатногосостава.

Неориентированные стекловолокниты содержат в качестве наполнителя короткое волокно. Это позволяет прессовать детали сложной формы, с металлической арматурой. Материал получается с изотопными прочностными характеристиками, намного более высокими, чем у пресс-порошков и даже волокнитов. Представителями такого материала являются стекловолокниты АГ-4В, а также ДСВ (дозирующиеся стекловолокниты), которые применяют для изготовления силовых электротехнических деталей, деталей машиностроения (золотники, уплотнения насосов и т. д.). При использовании в качестве связующего непредельных полиэфиров получают премиксы ПСК (пастообразные) и препреги АП и ППМ (на основе стеклянного мата). Препреги можно применять для крупногабаритных изделий простых форм (кузова автомашин, лодки, корпуса приборов и т. п.).

Ориентированные стекловолокниты имеют наполнитель в виде длинных волокон, располагающихся ориентированно отдельными прядями и тщательно склеивающихся связующим. Это обеспечивает более высокую прочность стеклопластика.

Стекловолокниты могут работать при температурах от –60 до 200 °С, а также в тропических условиях, выдерживать большие инерционные перегрузки.
При старении в течение двух лет коэффициент старения К = 0,5-0,7.
Ионизирующие излучения мало влияют на их механические и электрические свойства. Из них изготовляют детали высокой прочности, с арматурой и резьбой.


 

Карбоволокниты

 

Карбоволокниты (углепласты) представляют собой композиции,состоящие из полимерного связующего (матрицы) и упрочнителей в виде углеродных волокон (карбоволокон).

Высокая энергия связи С-С углеродных волокон позволяет им сохранить прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200 °С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными покрытиями (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия),, поэтому их подвергают травлению. При этом увеличивается степень активирования углеродных волокон по содержанию карбоксильной группы на их поверхности. Межслойная прочность при сдвиге углепластиков увеличивается в 1,6-2,5 раза. Применяется вискеризация нитевидных кристаллов TiO, AlN и SiN, что дает увеличение межслойной жесткости в 2 раза и прочности в 2,8 раза. Применяются пространственно армированные структуры.

Связующими служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

Эпоксифенольные карбоволокниты КМУ-1л, упрочненные углеродной лентой, и КМУ-1у на жгуте, висскеризованном нитевидными кристаллами, могут длительно работать при температуре до 200 °С.

Карбоволокниты КМУ-3 и КМУ-2л получают наэпоксианилиноформальдегидном связующем, их можно эксплуатировать притемпературе до 100 °С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связующего можно применять при температуре до 300 °С.

Карбоволокниты отличаются высоким статистическим и динамическим сопротивлением усталости, сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химическистойкие. После воздействия на воздухе рентгеновского излучения и Е почти не изменяются.

Теплопроводность углепластиков в 1,5-2 раза выше, чем теплопроводность стеклопластиков. Карбостекловолокниты содержат наряду с угольными стеклянные волокна, что удешевляет материал.

 

Карбоволокниты с углеродной матрицей

 

Коксованные материалы получают из обычных полимерныхкарбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800-1500 °С образуются карбонизированные, при 2500-3000 °С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме изделия и помещается в печь,в которую пропускается газообразный углеводород (метан). При определенном режиме (температуре 1100 °С и остаточном давлении 2660 Па) метан разлагается и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

Образующийся при пиролизе связующего кокс имеет высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.

Карбоволокнит с углеродной матрицей типа КУП-ВМ по значениям прочности и ударной вязкости в 5-10 раз превосходит специальные графиты;при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200 °С, на воздухе окисляется при 450 °С и требует защитного покрытия.

Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).

 

Бороволокниты

 

Бороволокниты представляют собой композиции из полимерного связующего и упрочнителя – борных волокон.

Бороволокниты отличаются высокой прочностью при сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости,теплопроводностью и электропроводимостью. Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

Помимо непрерывного борного волокна применяют комплексные боростеклониты, в которых несколько параллельных борных волокон оплетаются стеклонитью, предающей формоустойчивость. Применение боростеклонитей облегчает технологический процесс изготовления материала.

В качестве матриц для получения боровлокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и
КМБ-1к предназначены для длительной работы при температуре 200 °С; КМБ-3 и КМБ-3к не требуют высокого давления при переработке и могут работать при температуре не свыше 100 °С; КМБ-2к работоспособен при 300 °С.


Бороволокниты обладают высокими сопротивлениями усталости, они стойки к воздействию радиации, воды, органических растворителей и горюче-смазочных материалов.

 

Органоволокниты

 

Органоволокниты представляют собой композиционные материалы,состоящие из полимерного связующего и упрочнителей (наполнителей) в виде синтетических волокон. Такие материалы обладают малой массой, сравнительно высокими удельной прочностью и жесткостью, стабильны при действии знакопеременных нагрузок и резкой смене температуры. Для синтетическихволокон потери прочности при текстильной переработке небольшие; они малочувствительны к повреждениям.

К органоволокнитах значения модуля упругости и температурных коэффициентов линейного расширения упрочнителя и связующего близки.
Происходит диффузия компонентов связующего в волокно и химическое взаимодействие между ними. Структура материала бездефектна. Пористость непревышает 1-3 % (в других материалах 10-20 %). Отсюда стабильность механических свойств органоволокнитов при резком перепаде температур,действии ударных и циклических нагрузок. Ударная вязкость высокая (400-700кДж/мІ). Недостатком этих материалов является сравнительно низкая прочность при сжатии и высокая ползучесть (особенно для эластичных волокон).


Органоволокниты устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая. Большинство органоволокнитов может длительно работать притемпературе 100-150 °С, а на основе полиимидного связующего иполиоксадиазольных волокон – при температуре 200-300 °С.

В комбинированных материалах наряду с синтетическими волокнами применяют минеральные (стеклянные, карбоволокна и бороволокна). Такие материалы обладают большей прочностью и жесткостью.

Экономическая эффективность применения композиционных материалов

Области применения композиционных материалов не ограничены. Они применяются в авиации для высоконагруженных деталей самолетов (обшивки, лонжеронов, нервюр, панелей и т. д.) и двигателей (лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, подвергающихся нагреву, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов,бамперов и т. д., в горной промышленности (буровой инструмент, деталикомбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства.

Применение композиционных материалов обеспечивает новый качественный скачек в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов.

Технология получения полуфабрикатов и изделий из композиционных материалов достаточно хорошо отработана.

Композиционные материалы с неметаллической матрицей, а именно полимерные карбоволокниты используют в судо- и автомобилестроении (кузовагоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и другом.

Карбоволокниты с углеродной матрицей заменяют различные типы графитов. Они применяются для тепловой защиты, дисков авиационных тормозов,химически стойкой аппаратуры.

Изделия из бороволокнитов применяют в авиационной и космической технике (профили, панели, роторы и лопатки компрессоров, лопасти винтов итрансмиссионные валы вертолетов и т. д.).

Органоволокниты применяют в качестве изоляционного и конструкционного материала в электрорадиопромышленности, авиационнойтехнике, автостроении; из них изготовляют трубы, емкости для реактивов,покрытия корпусов судов и другое.

 
Возможности применения нанотехнологий в авиапромышленности

Опубликовано nikst в 24 октября, 2008 - 15:29

В Казани обсудили возможности применения нанотехнологий в авиапромышленности

Казань, 24 октября – Расширенное заседание Координационного совета по реализации соглашения о сотрудничестве в области развития нанотехнологий состоялось в Казани. На заседании, которое провел заместитель генерального директора государственной корпорации «Роснано»
 Андрей Малышев
, обсуждались возможности применения нанотехнологий в авиационной промышленности


Malyshev_A_B.jpgАндрей Малышев

«Взаимодействие «Роснано» и Татарстана – несколько особенное, – подчеркнул замглавы «Роснано», открывая заседание. – Мы пришли уже на готовую почву, нам уже идут готовые предложения и проекты. Нам поступают не просто проекты развития НИОКР, а комплексные решения задач создания производства новых материалов, опираясь на промышленный потенциал Татарстана».

По словам А.Малышева, «Роснано» и Правительство Татарстана выбрали несколько приоритетных направлений сотрудничества, и одно из них – применение нанотехнологий в авиастроении.
  • При использовании нанотехнологий могут производиться востребованные авиапромом композиционные материалы, гальванические покрытия, антистатические покрытия, клеи-герметики. Продукция, произведенная при помощи нанотехнологий, значительно превосходит таковую, сделанную традиционными методами.

А.Малышев сообщил, что сегодня делегация московских гостей посетила КАПО им.Горбунова и малое предприятие по производству авиационной техники «МВЕН».

«Мы смогли посмотреть, как сейчас используются композиционные материалы для производства самолетов», – отметил А.Малышев.

В ходе заседания были выслушаны доклады представителей авиапромышленной отрасли и различных научных центров – КГТУ им.Туполева, МГУ, ОАО «КНИАТ». Татарстанская сторона предложила «Роснано» ряд проектов по внедрению нанотехнологий в авиационную промышленность.

Андрей Малышев высказал пожелание разработчикам проектов – обязательно учитывать наличие бизнес-партнера как на этапе научно-исследовательских работ, так и на этапе коммерциализации проекта.

«У вас обязательно должен быть соинвестор», – заявил замлавы госкорпорации.

Pavlov_Boris.jpgБорис Павлов

По словам первого вице-премьера Правительства РТ Бориса Павлова, Татарстан может принимать участие в проектах через ИВФ и иные инструменты.

«Однако все же мы должны тщательно проработать вопросы соинвестирования», – подчеркнул Б.Павлов.

Между тем, российская авиационная промышленность уже крайне нуждается в новых композиционных материалах. Как напомнил технический директор КБ ОАО «Туполев» Лев Нездельский, российские самолеты всегда строились из отечественных материалов.

«В Ту-204 мы впервые применили много композитов – он тоже был из наших материалов, – сообщил Л.Нездельский. – Но их не хватало даже на то немногое количество самолетов, которое мы производим, и мы вынуждены были перейти на импортные, которые, однако нельзя использовать в военных целях. Так что российскому авиастроению очень нужны новые материалы».

В свою очередь директор ОАО «МВЕН» Виктор Ермоленко отметил, что маленькие предприятия, производящие легкую авиацию, являются хорошей площадкой для проверки новых материалов.

В целом участники заседания приняли решение о дальнейшее проработке проектов Республики Татарстан с тем, чтобы обеспечить их финансирование при содействии «Роснано» и в конечном итоге повысить конкурентоспособность российской авиационной отрасли.

http://www.tatar-inform.ru/…0/24/138491/

В Казани может появиться завод по производству композитных материалов

Казань, 24 октября – Сегодня в Казань прибыла делегация представителей госкорпорации
 «Роснано» 
и
 ОАО «Объединенная авиастроительная корпорация» 
для участия в расширенном заседании
 Координационного совета по реализации соглашения о сотрудничестве в области развития нанотехнологий и наноиндустрии


Утром гости во главе с заместителем генерального директора государственной корпорации «Роснано» Андреем Малышевым и в сопровождении первого вице-премьера Правительства РТ Бориса Павлова посетили КАПО им.Горбунова.
  • Как отметили участники заседания, в настоящее время российские авиационные заводы серьезно отстают от лидеров мировой гражданской авиаиндустрии в области использования композиционных материалов. Использование композитов вместо металла значительно облегчает конструкцию и на порядок увеличивает ресурс узлов и агрегатов. По словам генерального директора КАПО им.Горбунова Васила Каюмова, в авиалайнере Ту-214, производящемся в Казани, композитные материалы составляют около 25 процентов всей конструкции, в то время как новейший Boeing-787 Dreamlinerна 60 процентов состоит из композитов.

Новые самолеты «Сухой Superjet» и МС-21 должны содержать в себе значительно больше композиционных материалов. На этих машинах впервые в России планируется использовать так называемое «черное крыло» – то есть полностью изготовленное из композитов. Как заявил директор технологического центра ОАК Юрий Тарасов, Россия может изучить существующий опыт зарубежных компаний в разработке «черного крыла» и создать свои технологии, которые позволят захватить часть зарубежного рынка разработки и производства крыльев.
  • Между тем, производимые в настоящее время российской промышленностью композиционные материалы втрое дороже импортных и при этом примерно втрое уступают им по важнейшим технологическим параметрам – таким, как прочность на разрыв. Да и объемы производства этих материалов недостаточны для всех заинтересованных в них отраслей – космической, авиационной, судостроительной. Использовать импортные материалы в российских самолетах можно только на первых порах, но экспортные ограничения зарубежных стран и компаний вынуждают ОАК задуматься о развитии собственного производства современных композиционных материалов для гражданской авиации. Поэтому в настоящее время компания занята поиском места для строительства нового завода.

По словам специалистов, инвестиции в новое предприятие должны составить 400–700 миллионов евро, а заработать оно должно не позже 2013 года, когда в небо поднимется первый российский гражданский самолет с «черным крылом». В качестве вариантов расположения завода рассматриваются Воронеж, Ульяновск, Подмосковье и Казань.
  • Первый вице-премьер Правительства РТ Борис Павлов в свою очередь подтвердил, что Казань готова к строительству подобного завода – в городе есть хорошая научная база, кадровый потенциал, поддержка руководства республики и предприятие, готовое потреблять продукцию нового завода. КАПО уже выбрано ОАК в качестве базового предприятия по производству крыльев для всей Объединенной авиастроительной корпорации, и предприятие готово производить в том числе и «черное крыло».


Плюсы композиционных материалов


1)   непрерывности сопротивления действию нагрузки в волокнистом усилителе и наличию клеевых соединений, способствующих сохранению ~85% прочности композиционного материала после местного разрушения по сравнению с 20% прочности, сохраняющейся в этих условиях у металлической детали; 

2)  возможности ориентировать усилитель в направлении действия нагрузки; 

– 3) двойному превосходству удельного предела усталости композиционного материала по сравнению с титановыми сплавами, обладающими наибольшей выносливостью среди авиационных металлов; 

4)  минимальному количеству крупногабаритных деталей из композиционных материалов в изделии (например, 84 детали из эпоксидного боропластика вместо 280 деталей из алюминиевого сплава в закрылке одного из зарубежных самолетов). Это сокращает расход на оснастку, изготовление и транспортировку деталей, а главное — повышает надежность эксплуатации вследствие сокращения числа соединений (большей сплошности конструкции) ; 

5)  большей легкости изготовления оптимальных аэродинамических профилей, не теряющих формы при высоких нагрузках; 

6)   большей простоте защиты деталей из композитов от разрушения атмосферными воздействиями по сравнению со сложной защитой металлов от электрохимической коррозии, которой композиты не -подвержены; 

7)  высоким амортизационным характеристикам композитов, снижающим вибрации и распространение шума. 

Прессматериалы, наполненные нитевидными монокристаллами («усами») графита-, сапфира (А1203), карбидов кремния и бора (SiCm B4C3), имеющие весьма высокую прочность и жесткость," могут успешно сочетать функции несущих силовых элементов и тепловой защиты. Так, фенопласты, наполненные «усами» сапфира, применяют для изготовления стенок камеры сгорания и сопла ракеты, работающей на топливе N2O4 (гидразин).




1. Реферат Товарищество собственников жилья 3
2. Контрольная работа Методологічні аспекти екологічного менеджменту
3. Реферат Исследование деформационных свойств горных пород в скважинах с применением прессиометров
4. Реферат на тему Анализ рентабельности предприятия НПРУП Экран 12
5. Курсовая на тему Международные стандарты бухгалтерского учета 3
6. Реферат Анализ движения денежных потоков
7. Реферат Личность Петра I 2
8. Реферат Эргатические функции и классификация профессий
9. Реферат Банковские риски 8
10. Курсовая Принятие управленческих решений в сфере оказания услуг на примере ОАО ГК Центральный