Реферат

Реферат Ртуть и ее соединение

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025





Содержание

Введение                                                                                                  стр.3

Историческая справка                                                                             стр.5

Получение ртути                                                                                     стр.6

Свойства ртути и ее применение                                                            стр.7

Соединение ртути                                                                                   стр.12

Распространенность ртути в природе                                                    стр.14

Ртуть в организме                                                                                   стр.20

Техника безопасности при работе с ртутью                                           стр.22

Демеркуризация                                                                                                           стр.24

Первая помощь при ртутных отравлениях                                             стр.28

Заключение                                                                                              стр.29

Список литературы                                                                                 стр.30
                                                                                    

                                                                 
 ВВЕДЕНИЕ

Ртуть - удивительный химический элемент. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах.

Ртуть причастна к научным открытиям и техническим достижениям: изобретение Торричелли ртутного барометра, Амантоном и Фаренгейтом ртутного термометра, опыты Паскаля по изучению атмосферного давления, открытие сверхпроводимости Камерлинг-Оннесом, получившего в 1913 г. Нобелевскую премию, знаменитый опыт Майкельсона-Морли, доказавший отсутствие эфирного ветра при движении Земли, эксперименты Дж. Франка и Г. Герца, подтвердившие теорию строения атома Н. Бора, создание вакуум-насоса Ленгмюром и другое. Пары ртути были первым проявителем в фотографическом деле, который использовался Даггером. Особое значение ртуть имела для развития аналитической химии и открытия многих химических элементов и их соединений. В 1922 г. Нобелевской премии был удостоен чешский химик Я. Гейровский, создавший полярографический метод химического анализа, где ртуть играет далеко не последнюю роль. Однако ртуть может быть не только полезной, но и вредной для всего живого. В малых количествах она всегда присутствует в окружающей нас среде. При определенных условиях, особенно в результате промышленной и бытовой деятельности людей, ее концентрации в среде обитания могут заметно возрастать, что способно оказать негативное воздействие на наше самочувствие и состояние здоровья. Одна из самых известных экологических трагедий 20 столетия - болезнь Минамата - вызвана загрязнением окружающей среды ртутью.
                                      
Историческая справка

Самородная ртуть была известна за 2000 лет до и. э. народам Индии и Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как окраска, лекарственное и косметическое средство. Греческий Диоскорид (1 в. н. э,), нагревая киноварь в железном сосуде с крышкой, получил ртуть в виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydragyros (от греч. Hydro – вода и argyros – серебро),т. е. жидким серебром, откуда произошли лат. hydrargyrum, а также argentum vivum – живое серебро. Последнее сохранилось в названиях

Ртути Quicksilver (англ.) и Quecksilber (нем.).Происхождение русского, названия ртути не установлено. Алхимики считали ртуть главной составной частью всех металлов. “Фиксация” ртути (переход в твердое состояние) признавалась первым условием ее превращения в золото. Твёрдую ртуть впервые получили в декабре 1759 петербургские академики И. А. Браун и М. В. Ломоносов. Ученым удалось заморозить ртуть в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая ртуть оказалась ковкой, как свинец. Известие о “фиксации” ртуть произвело сенсацию в ученом мире того времени; оно явилось одним из наиболее убедительных доказательств того, что ртуть – такой же металл, как и все прочие.



Получение ртути



Ртутные руды (или рудные концентраты), содержащие ртуть в виде киновари, подвергают окислительному обжигу

HgS + O 2 = Hg + SO 2

Обжиговые газы, пройдя пылеуловительную камеру, поступают в трубчатый холодильник из нержавеющей стали или монель-металла. Жидкая ртуть стекает в железные приёмники. Для очистки сырую ртуть пропускают тонкой струйкой через высокий (1 – 1,5 м) сосуд с 10%-ной HNO 3 , промывают водой, высушивают и перегоняют в вакууме.

Возможно также гидрометаллургическое извлечение ртути из уд и концентратов растворением HgS в сернистом натрии с последующим вытеснением ртуть алюминием. Разработаны способы извлечения ртуть электролизом сульфидных растворов.



                                
Свойства ртути и ее применение

Ртуть (Нg) -химический элемент II группы периодической системы элементов Д.И. Менделеева; атомный номер 80, относительная атомная масса 200,59. Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20°С 13,54616 г/см3; температура плавления равна -38,89°С, кипения 357,25°С. При замерзании (-38,89°С) она становится твердой и легко поддается ковке.

Даже в обычных условиях ртуть обладает повышенным давлением насыщенных паров и испаряется с довольно высокой скоростью, которая с ростом температуры увеличивается. Это приводит к созданию опасной для живых организмов ртутной атмосферы. Например, при 24°С атмосферный воздух, насыщенный парами ртути, может содержать их в количестве около 18 мг/м3; такой уровень в 1800 раз превышает ПДК (предельно допустимую концентрацию) ртути в воздухе рабочей зоны и в 60000 раз ПДК в атмосферном воздухе. Ртуть способна испаряться через слои воды и других жидкостей.

При действии на ртутные пары вольтовой дуги, электрической искры и рентгеновских лучей наблюдаются явления люминесценции, флюоресценции и фосфоресценции. В вакуумной трубке между ртутными электродами при электрических разрядах получается свечение, богатое ультрафиолетовыми лучами, что используется в технике при конструировании ртутных ламп. Еще одно замечательное свойство ртути связано с тем, что при растворении в ней металлов образуются амальгамы - металлические системы, одним из компонентов которых является ртуть. Они не отличаются от обычных сплавов, хотя при избытке ртути представляют собой полужидкие смеси. Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути, что нашло широкое применение при извлечении золота и серебра из руд. Амальгамированию подвержены металлы, смачиваемые ртутью. Стали, легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.

Ртуть - весьма агрессивна по отношению к различным конструкционным материалам, что приводит к коррозии и разрушению производственных объектов и транспортных средств. Так, в 1970-е гг. довольно актуальной была проблема загрязнения самолетов, в конструкции которых попадала ртуть, вызывающая жидкометаллическое охрупчивание алюминиевых сплавов. Самолеты направлялись в капитальный ремонт и даже списывались с эксплуатации.

В соединениях ртуть проявляет степень окисления +2 и +1. В специальной литературе в таких случаях обычно указывается соответственно Hg(ll) или Hg(l). Обладая высоким потенциалом ионизации, высоким положительным окислительным потенциалом, ртуть является относительно стойким в химическом отношении элементом.

Это обусловливает ее способность восстанавливаться до металла из различных соединений и объясняет частые случаи нахождения ртути в природе в самородном состоянии.

На воздухе ртуть при комнатной температуре не окисляется. При нагреве до температур, близких к температуре кипения (300-350°С), она соединяется с кислородом воздуха, образуя красный оксид двухвалентной ртути НgО, который при дальнейшем нагревании (до 400°С и выше) снова распадается на ртуть и кислород. Желтый оксид ртути НgО получается при добавлении щелочей к водному раствору соли Hg(ll). Существует и оксид ртути черного цвета (Нg2О), нестойкое соединение, в котором степень окисления ее равна +1. В соляной и разбавленной серной кислотах и в щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и в царской водке, а при нагревании в концентрированной серной кислоте. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Растворимость ее в воде зависит также от рН раствора. Минимальная растворимость наблюдается при рН=8, с увеличением кислотности или щелочности воды она увеличивается. В присутствии кислорода ртуть в воде окисляется до ионной формы Нg2+ (создавая концентрации до 40 мкг/л).

Ртуть реагирует с галогенами (хлор, йод, фтор, бром), серой, селеном, фосфором и другими неметаллами. Практическое значение имеют йодная ртуть HgJ, хлористая ртуть (каломель) Нg2Cl2 и хлорная ртуть (сулема) НgCl2. При взаимодействии ртути с серой образуется сульфид ртути HgS - самое распространенное в природе ее соединение, в форме которого добывается почти вся ртуть. Оно известно в трех модификациях: красная (идентичная минералу киноварь), черная (черный сульфид ртути, или метациннабарит) и - р-киноварь (в природных условиях не обнаружена). Из других соединений ртути известны такие, как гремучая ртуть Hg(ONC)2, нитрат Нg(NO3)2, сульфат (HgSO4) и сульфит (HgSO3) ртути, красный и желтый йодид ртути и др.

Существует большое количество ртутьсодержащих органических соединений, в которых атомы металла связаны с атомами углерода. Химическая связь углерода и ртути очень устойчива. Она не разрушается ни водой, ни слабыми кислотами, ни основаниями. С позиций опасности для живых организмов (т. е. с позиций токсикологии - науки о ядах) наиболее токсичными из металлоорганических соединений ртути являются алкилртутные соединения с короткой цепью, прежде всего, метилртуть.

Ртуть широко применяется при изготовлении научных приборов (барометры, термометры,манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ ; в медицине (каломель, сулема, ртутьорганические и др. соединения), в качестве пигмента (киноварь), в сельском хозяйстве (органические соединения ртути ) в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами). ртуть и ее соединения токсичны, поэтому работа с ними требует принятия необходимых мер предосторожности.
Ртуть всегда находила широкое применение в различных сферах практической, научной и культурной деятельности человека. К началу 1980-х гг. было известно свыше тысячи разнообразных областей ее применения. Вот основные из них, в которых ртуть и ее соединения в той или иной мере используются и сейчас: - химическая промышленность - производство хлора и каустика, ацетальдегида, хлорвинила, полиуретанов, ртутьорганических пестицидов, красок;

- электротехническая промышленность - производство различных ламп, реле, сухих батарей, переключателей, выпрямителей, игнитронов и др.;

- радиотехническая промышленность и приборостроение - производство контрольно-измерительных приборов (термометры, барометры, манометры, полярографы, электрометры), радио- и телеаппаратуры;

- медицина и фармацевтическая промышленность - изготовление глазных и кожных мазей, веществ бактерицидного действия, производство витамина В , изготовление зубных пломб (амальгамы серебра и меди);

- сельское хозяйство (ядохимикаты, антисептики);

- машиностроение и вакуумная техника - производство вакуумных насосов и др.;

- военное дело - изготовление детонаторов, управляемых снарядов;

- металлургия - получение сверхчистых металлов, точное литье, амальгамирование благородных металлов;

- горное дело (гремучая ртуть);

- лабораторная практика и аналитическая химия.

В энергетике ртуть использовалась как рабочее тело в мощных бинарных установках промышленного типа, где для генерации электроэнергии на первых ступенях применялись ртутно-паровые турбины, а также в ядерных реакторах для отвода тепла. Элементарную ртуть используют в процессах разделения изотопов лития. Ртутью иногда легируют другие металлы. Небольшие ее добавки увеличивают твердость сплава свинца со щелочноземельными металлами. Ее даже использовали при паянии. Цианид ртути применяли в производстве антисептического мыла.
                                                          
Соединение ртути

Соединения ртути применяют как средство защиты растений от милдью (ложная мучнистая роса), а также от плесени, гниения.

Хлорид ртути(I) Hg2Cl2 (каломель) – тяжелый белый порошок без вкуса, без запаха, нерастворим в воде, медленно разлагается на свету. Он реагирует с гидроксидом аммония, образуя свободную ртуть в виде высокодисперсного черного порошка. Каломель используется как слабительное, диуретик, антисептик. В промышленности ее используют для производства бенгальских огней и художественного фарфора. В научных лабораториях часто применяется каломельный электрод. Иодид ртути(I) Hg2I2 – светложелтый порошок, темнеющий на свету в результате разложения и выделения высокодисперсной ртути, – используют как антисептик и лекарство. Нитрат ртути(I) Hg2(NO3)2 образует бесцветные кристаллы, растворимые в очень разбавленной азотной кислоте; его применяют как едкое вещество и антисептик, а также для чернения латуни. Сульфат ртути(I) Hg2SO4 – светложелтый порошок, который становится серым на свету. Он плохо растворим в воде. Его применяют в технологии аккумуляторов и электролитических ячеек.

Хлорид ртути(II) HgCl2 (сулема, или дихлорид ртути) получают в виде бесцветных кристаллов или белого порошка, который заметно летуч при 100° C и полностью испаряется при 300° C. Он растворим в воде и образует кислые растворы в результате гидролиза и слабой ионизации. Сулема сильно ядовита, является эффективным антисептиком и протравой и применяется для обеззараживания одежды. Ее водные растворы 1:1000 или 1:5000 используют для обеззараживания и промывания ран и лечения кожных болезней. В промышленности сулему используют для консервации древесины и анатомических образцов, а также для бальзамирования, дезинфекции, дубления, крашения дерева, в гальваностегии и деполяризации сухих батарей и для многих других целей. Иодид ртути(II) HgI2 – яркокрасный ядовитый порошок – применяют как протраву и лекарство. Нитрат ртути(II) Hg(NO3)2 – белый кристаллический, растворимый в воде порошок, – применяют в медицине, производстве фетровых шляп, для синтеза фульмината ртути (гремучей ртути) Hg(CNO)2 – инициирующего ВВ для капсюлей-детонаторов и капсюлей-воспламенителей в снарядах, гранатах и торпедах. Тиоцианат ртути(II) Hg(CNS)2 – белый порошок без запаха, при нагревании во много раз увеличивается в объеме, что используют для демонстрации опыта «фараонова змея»; соединение в порошке и в парах ядовито. Ртуть образует много комплексных соединений. Например, щелочной раствор тетраиодомеркурата калия K2[HgI4] (реактив Несслера) используют для количественного определения аммиака, в присутствии которого образуется бурый осадок NH2Hg2I3. Этот метод позволяет обнаруживать до 10–8 долей аммиака в воде. Амидохлорид ртути HgNH2Cl (белый аморфный порошок), получается при добавлении гидроксида аммония к хлориду ртути(II); при нагревании не плавится, а испаряется в режиме слабокрасного нагрева. Это соединение используют для лечения кожных сыпей и раздражений (белая ртутная мазь).


Распространенность ртути в природе


Ртуть - редкий элемент. Ее средние содержания в земной коре и основных типах горных пород оценивают-ся в 0,03-0,09 мг/кг, т. е. в 1 кг породы содержится 0,03-0,09 мг ртути, или 0,000003-0,000009 % от общей массы (для сравнения - одна ртутная лампа в зависимости от конструкции может содержать от 20 до 560 мг ртути, или от 0,01 до 0,50% от массы). Масса ртути, сосредоточенная в поверхностном слое земной коры мощностью в 1 км, составляет 100 000 000 000 т (сто миллиардов тонн), из которых в ее собственных месторождениях находится только 0,02%. Оставшаяся часть ртути существует в состоянии крайнего рассеяния, по преимуществу в горных породах (в водах Мирового океана рассеяно 41,1 млн. т ртути, что определяет невысокую среднюю концентрацию ртути в его водах - 0,03 мкг/л). Именно эта рассеянная ртуть создает природный геохимический фон, на который накладывается ртутное загрязнение, обусловленное деятельностью человека и приводящее к формированию в окружающей среде зон техногенного загрязнения.

Известно более 100 ртутных и ртутьсодержащих минералов. Основным минералом, определяющим промышленную значимость ртутных месторождений, является киноварь. Самородная ртуть, метациннабарит, ливинг-стонит и ртутьсодержащие блеклые руды имеют резко подчиненное значение и добываются попутно с киноварью.

Всего в мире обнаружено около 5000 ртутных месторождений, рудных участков и рудопроявлений, получивших самостоятельное название; из них в разное время разрабатывались около 500. Но за всю историю ртутной промышленности подавляющая часть ртути (более 80%) получена на 8 месторождениях: Альмаден (Испания), Идрия (Словения), Монте-Амиата (Италия), Уанкавелика (Перу), Нью-Альмаден и Нью-Идрия (США), Никитовка (Украина), Хайдаркан (Киргизия).

В промышленности для получения металлической ртути используют два варианта технологии ее извлечения из руд: окислительно-дистилляционный обжиг с выделением ртути из газовой фазы и комбинированный способ, включающий предварительное обогащение и последующую пирометаллургическую переработку концентрата. По оценкам специалистов, человеком было произведено порядка 700000 т ртути, существенная часть из которых рассеяна на земной поверхности. Количество ртути, которое поступило в среду обитания в ходе других видов человеческой деятельности (при добыче различных полезных ископаемых, выплавке металлов, производстве цемента, сжигании ископаемого топлива и т. д.), также велико.

Ртуть концентрируется не только в ртутных минералах, рудах и вмещающих их горных породах. Согласно закону Кларка-Вернадского о всеобщем рассеянии химических элементов, в тех или иных количествах ртуть обнаруживается во всех объектах и компонентах окружающей среды, в том числе в метеоритах и образцах лунного грунта. В повышенных концентрациях ртуть содержится в рудах многих других полезных ископаемых (полиметаллических, медных, железных и др.). Установлено накопление ртути в бокситах, некоторых глинах, горючих сланцах, известняках и доломитах, в углях, природном газе, нефти.

Современные данные свидетельствуют о высоком содержании ртути в мантии (второй от поверхности, после земной коры, оболочке Земли), в результате дегазации которой, а также естественного процесса испарения ртути из земной коры (горных пород, почв, вод), наблюдается явление, получившее название «ртутного дыхания Земли». Процессы эти идут постоянно, но активизируются при извержениях вулканов, землетрясениях, геотермальных явлениях и т. п. Поставка ртути в окружающую среду в результате ртутного дыхания Земли (природная эмиссия) составляет около 3000 т в год. Поставка ртути в атмосферу, обусловленная промышленной деятельностью человека (техногенная эмиссия), оценивается в 3600-4500 т в год.

В природных условиях ртуть обычно мигрирует в трех наиболее распространенных состояниях - Нg0 (элементарная ртуть), Нg2+ (ион двухвалентной ртути), СН3Нg+ (ион метилртути), а также в виде менее распространенного иона Нg22+ Химические соединения Hg(ll) встречаются в природе значительно чаще, нежели Hg(l). В водах между Нg0, Нg22+ и Нg2+ устанавливается равновесие, которое определяется окислительно-востановительным потенциалом раствора и концентрацией различных веществ, формирующих комплексы с Нg2+. Ионы Нg(II) образуют устойчивые комплексы с биологически важными молекулами. Именно высокое химическое сродство ртути (II) и ее метилированных соединений к биомолекулам в существенной мере определяет токсикологическую опасность ртути в условиях окружающей среды.

Распределение и миграция ртути в окружающей среде осуществляются в виде круговорота двух типов. Во-первых, глобального круговорота, включающего циркуляцию паров ртути в атмосфере (от наземных источников в Мировой океан и наоборот). Во-вторых, локального круговорота, основанного на процессах метилирования неорганической ртути, поступающей, главным образом, из техногенных источников. Многие этапы локального круговорота еще недостаточно ясны, но полагают, что он включает циркуляцию в среде обитания диметилртути. Именно с круговоротом второго типа чаще всего связано формирование опасных с экологических позиций ситуаций.

Поступающие в окружающую среду из природных и техногенных источников ртуть и ее соединения подвергаются в ней различным преобразованиям. Неорганические формы ртути (элементарная ртуть Нg0 и неорганический ион Hg2+) претерпевают преобразования в результате окислительно-восстановительных процессов. Пары ртути окисляются в воде в присутствии кислорода неорганическую двухвалентную ртуть (Hg2+), чему в значительной мере способствуют присутствующие в водной среде органические вещества, которых особенно много в зонах загрязнения. В свою очередь, ионная ртуть, поступая или образуясь в воде, способна формировать комплексные соединения с органическим веществом. Наряду с окислением паров ртути образование Hg2+ может происходить при разрушении ртутьорганическихсоединений.

Неорганическая ртуть Hg2+ претерпевает два важных вида превращений в окружающей среде. Первый - это восстановление с образованием паров ртути. Этот процесс, являющийся ключевым в глобальном круговороте ртути, изучен плохо. Известно, что некоторые бактерии способны осуществлять это преобразование. Второй важной реакцией, которой подвергается Hg2+ в природе, является ее превращение в метил- и диметилпроизводные и их последующие взаимопревращения друг в друга. Эта реакция играет ключевую роль в локальном круговороте ртути. Важно то, что метилирование ртути происходит в самых различных условиях: в присутствии и отсутствии кислорода, разными бактериями, в различных водоемах, в почвах и даже в атмосферном воздухе. Особенно интенсивно процессы метилирования протекают в верхнем слое богатых органическим веществом донных отложений водоемов, во взвешенном в воде веществе, а также в слизи, покрывающей рыбу. Метилирование приводит к образованию монометил- и диметилртутных соединений. Монометилртуть (СН3-Hg+) , обычно говорят и пишут просто «метилртуть»), обладая, как уже говорилось, высоким сродством к биологическим молекулам, чрезвычайно активно накапливается живыми организмами. Факторы биоконцентрирования, т. е. отношения содержания метилртути втканяхрыб кее концентрации в воде, могут достигать 10000-100000. Диметилртуть (СН3)2Hg, отличаясь высокой растворимостью и испаряемостью, улетучивается из воды в атмосферу, где может превращаться в монометил ртуть, удаляться с дождевыми осадками и возвращаться в водоемы и в почву, завершая таким образом локальный круговорот ртути.

Типичные природные (фоновые) концентрации паров ртути в приземном слое в атмосферном воздухе обычно составляют 10-15 нг/м3 при колебаниях от 0,5-1 до 20-25 нг/м3. Видимо, именно такие содержания практически безопасны для живых организмов. В зонах загрязнения концентрации возрастают в десятки и сотни раз, а в производственных или загрязненных ртутью помещениях могут достигать экстремально высоких значений (до 1-5 мг/м3). Главной формой ртути в атмосфере являются пары металла (Нg0), меньшее значение имеют ионная форма, органические и неорганические (хлориды, йодиды) соединения. Она также связывается с аэрозолями. В зонах загрязнения концентрации ртути в дождевой воде достигают 0,3-0,5 мкг/л и даже более (при фоне обычно не больше 0,1 мкг/л). В городах наблюдается увеличение количества ртути, переносимой с аэрозолями и атмосферной пылью.

Фоновые уровни ртути в природных почвах зависят от их типа, но в большинстве случаев находятся в пределах 0,01-0,1 мг/кг. Нижние пределы характерны для песчаных почв, верхние - для почв, богатых органическим веществом. Содержания, превышающие эти величины, связаны с влиянием загрязнения. В зонах загрязнения уровни ртути, особенно в верхних горизонтах почв, увеличиваются в десятки-сотни раз, иногда даже в тысячи раз. В почвах ртуть активно аккумулируется гумусом, глинистыми частицами, может мигрировать вниз по почвенному профилю и поступать в грунтовые воды, поглощаться растительностью, в том числе сельскохозяйственной, а также выделяться в виде паров и в составе пыли в атмосферу. При сильном загрязнении почв концентрации ртути в воздухе могут достигать опасных для человека величин.

В поверхностных водах ртуть мигрирует в двух основных фазовых состояниях - в растворе вод (растворенные формы) и в составе взвеси (взвешенные формы). В свою очередь, в растворе вод она может находиться в виде двухвалентного иона, гидроксида ртути, комплексных соединений (с хлором, органическим веществом и др.). Среди соединений Нg (II), мы уже знаем об этом, по своему экологическому и токсикологическому значению особая роль принадлежит ртутьорганическим соединениям. Важнейшими аккумуляторами ртути, особенно в условиях загрязнения, являются взвесь и донные отложения водных объектов. Наиболее высокими концентрациями ртути характеризуются техногенные илы, активно накапливающиеся в реках и водоемах, куда поступают сточные воды промышленности. Уровни содержания ртути в них достигают 100-300 мг/кг и больше (при фоне до 0,1 мг/кг). Известны случаи, когда количество ртути, поступившей со сточными водами и накопившееся в таких илах, составляло десятки и сотни тонн. Нормальное функционирование таких рек и водоемов, их практическое использование возможно только при удалении загрязненных отложений. Использование загрязненных ртутью вод для орошения сельскохозяйственных угодий приводило кее накоплению в сельхозпродукции до уровней, превышающих ПДК.

Типичные фоновые уровни валовой ртути (растворенные формы) в природных пресных водах составляют 0,03-0,07 мкг/л; в донных отложениях рек и пресноводных озер - 0,05-0,1 мг/кг; в пресноводных растениях -0,04-0,06 мг/кг сухой массы. Обычно там, где нет указаний на загрязнение ртутью, ее уровни в питьевых водах редко превышают 0,1 мкг/л. Ртуть, прежде всего метилртуть, относится к веществам, которые накапливаются в пищевой цепи, простым образцом которой может быть, например, следующий ряд: личинка - пескарь - окунь -щука - кошка. Это значит, что в каждом последующем организме содержание метилртути обычно многократно выше, нежели в предыдущем. Пищевые продукты, выращенные и полученные при соблюдении необходимых условий, обычно характеризуются допустимым содержанием ртути.

Ртуть в организме

Содержание Ртути в организмах составляет около 10-6%. В среднем в организм человека с пищей ежесуточно поступает 0,02-0,05 мг Ртути. Концентрация Ртути в крови человека составляет в среднем 0,023 мкг/мл, в моче - 0,1-0,2 мкг/мл. В связи с загрязнением воды промышленного отходами в теле многих ракообразных и рыб концентрация Ртути (главным образом в виде ее органических соединений) может значительно превышать допустимый санитарно-гигиенический уровень. Ионы Ртути и ее соединения, связываясь с сульфгидрильными группами ферментов, могут инактивировать их. Попадая в организм, Ртуть влияет на поглощение и обмен микроэлементов - Cu, Zn, Cd, Se. В целом биологическая роль Ртуть в организме изучена недостаточно. Отравления Ртутью и ее соединениями возможны на ртутных рудниках и заводах, при производстве некоторых измерительных приборов, ламп, фармацевтических препаратов, инсектофунгицидов и других.

Основную опасность представляют пары металлической Ртути, выделение которых с открытых поверхностей возрастает при повышении температуры воздуха. При вдыхании Ртуть попадает в кровь. В организме Ртуть циркулирует в крови, соединяясь с белками; частично откладывается в печени, в почках, селезенке, ткани мозга и др. Токсическое действие связано с блокированием сульфгидрильных групп тканевых белков, нарушением деятельности головного мозга (в первую очередь, гипоталамуса). Из организма Ртуть выводится через почки, кишечник, потовые железы и др.

Острые отравления Ртутью и ее парами встречаются редко. При хронических отравлениях наблюдаются эмоциональная неустойчивость, раздражительность, снижение работоспособности, нарушение сна, дрожание пальцев рук, снижение обоняния, головные боли. Характерный признак отравления - появление по краю десен каймы сине-черного цвета; поражение десен (разрыхленность, кровоточивость) может привести к гингивиту и стоматиту. При отравлениях органических соединениями Ртути (диэтилмеркурфосфатом, диэтилртутью, этилмеркурхлоридом) преобладают признаки одновременного поражения центральной нервной (энцефалополиневрит) и сердечно-сосудистой систем, желудка, печени, почек.
Техника безопасности при работе с ртутью.

Экспериментально было показано, что пары ртути хорошо поглощаются штукатуркой, деревом, почвой, тканями, ржавчиной и другими материалами и веществами. Значительное количество ртути сорбируется даже такими непористыми материалами, как стекло, линолеум, глазурованные и эмалированные поверхности. В результате поглощения ртути в рабочих помещениях создаются ртутные депо, представляющие собой при определенных условиях источники отравления для работающих в данном помещении, так как процесс адсорбции ртути является обратимым. Поэтому при работе со ртутью должны быть созданы ртутенепроницаемые покрытия, практически исключающие поглощение паров ртути и сводящие к минимуму их десорбцию.
Строительные материалы должны быть непроницаемы для жидкой и газообразной ртути, прочными и не растрескиваться с течением времени, иметь гладкие поверхности, позволяющие легко смывать адсорбированную ртуть, они также должны быть неэлектропроводными и устойчивыми к действию химических сред, прежде всего щелочей и кислот.
Ртутенепроницаемые неэлектропроводные и химически стойкие материалы и композиции могут быть разбиты на 3 группы: щелочестойкие, кислотостойкие и неэлектропроводные щелоче-кислотостойкие материалы.


К щелочестойким относятся гранитные плиты, а также покрытия, изготовленные из бетона или песчано-цементного раствора. Покрытия, выполненные из бетона или из песчано-цементного раствора, могут быть монолитными или состоять из плиток, однако во всех случаях для придания ртутенепроницаемости их подвергают специальной пропитке.

К кислотостойким материалам относятся полиизобутилен, диабазовые и гранитные плиты, силикатное стекло, глазурованные плитки, линолеум некоторых сортов, оргстекло и керамические плитки. При использовании керамических плиток их также пропитывают специальными растворами.

К неэлектропроводным щелоче-кислотостойким материалам относятся полистирольные и асбоэбонитовые плитки, релин, эскапон, а также материалы, изготовленные на основе поливинилхлорида (пластикат и винипласт).

Отношение строительных материалов к ртути характеризуется ртутенепроницаемостью, сорбцией ее паров и смываемостью адсорбированной ртути.

В последние годы все более широкое распространение получают полы, выполненные в виде бесшовных монолитных покрытий из мастичных, полимер- цементных или наливных составов. Наливные полы имеют гладкую поверхность, плотную структуру и хорошо упругие свойства; они термо- и морозостойки, обладают повышенной водостойкостью, ртутенепроницаемы и щелочестойки, не дают трещин и не коробятся. Такие полы гигиеничны, поскольку, они, в отличие от твердых поверхностей, не приводят к развитию плоскостопия у работающих, легко моются и очищаются от загрязнений и т.д. защита стен, колонн, перекрытий (и др., кр. полов.)
Оштукатуренные поверхности стен, потолков, колонн и других строительных конструкций защищают от ртути лакокрасочными покрытиями.
Отдельные участки стен, колонн и других конструкций, подвергающиеся систематическому одновременному воздействию металлической ртути и агрессивных жидкостей, облицовывают на необходимую высоту стеклянными плитками, листовым стеклом, асбоэбонитовыми, полистирольными и керамическими плитками. Швы между плитками разделывают цементным раствором с последующей пропиткой специальными растворами или мастикой.

Демеркуризация
Несмотря на все предосторожности при работе со ртутью, в лабораторных и производственных условиях могут происходить аварии, сопровождающиеся загрязнением ртутью помещений, оборудования и одежды.
Демеркуризация помещений включает механическую уборку видимых количеств ртути и химическую обработку загрязненных мест с последующим тщательным удалением продуктов реакции ртути с химическими реагентами.
Для механического удаления пролитой ртути используют стеклянную ловушку с резиновой грушей. Небольшие количества пролитой ртути можно собрать с помощью амальгамированных полосок или кисточек из белой жести, медной или латунной проволоки и других амальгамирующихся металлов, а также из металлизированных угольных волкон.


Для собирания капелек ртути применяют также лейкопластырь, который прикладывают к поверхности, загрязненной ртутью. Прилипшие к лейкопластырю капельки ртути отделяют от него промыванием ацетоном или другими органическими растворителями.

Для демеркуризации помещений в производственных условиях можно использовать передвижной агрегат ТД, имеющий камеру, которую можно нагревать до 2000 С.
Механическая обработка загрязненных поверхностей от ртути недостаточна, так как капельки ртути могут задерживаться при наличии в поверхности трещин или щелей.
Для химической очистки поверхностей, загрязненных ртутью часто применяют растворы пермарганата калия. Рекомендуют употреблять раствор, в 1л. которого содержится 1г. пермарганата калия и 5 мл. соляной кислоты
(плотность 1,19 г/см2). Также применяют растворы сульфида натрия и хлорида железа (III), состав, содержащий 15-20% этилендиаминтетрауксусной кислоты и
80-85% тиосульфата (25 г. этой смеси растворяют в 1 л. воды) и др.
Известно, что ткани, особенно окрашенные в темные цвета, хорошо поглощают пары ртути. Однако в производственных условиях или при работе со ртутью в лабораториях основным источником загрязнения одежды является не сорбция ее паров, а попадание на одежду мелких капель и брызг при неосторожном обращении со ртутью. Ртуть, попавшая на одежду и адсорбированная ей, является дополнительным источником отравления не только для того, кто носит эту одежду, но и для окружающих. На производстве и в лабораторных условиях, приработе с большими количествами ртути, следует пользоваться верхней одеждой, бельем и обувью, предназначенными только для работы со ртутью. В соответствии с правилами стирки спецодежды при работе со ртутью
(не в домашних условиях) загрязненную одежду освобождают от пыли, загружают в барабан стиральной машины и в течение 30 мин промывают холодной водой.
Промытую спецодежду заливают мыльно-содовым раствором и стирают в течение
30 мин при 70-800 С. Простиранную спецодежду промывают в барабане сначала горячей, а затем холодной водой и в течение 30 мин обрабатывают 1-2%-ным раствором соляной кислоты. После этого производят повторную стирку. При такой стирке ткань освобождается от ртути на 96-99%. индивидуальная защита и меры личной профилактики
При работе со ртутью и ртутными приборами возможны аварии, связанные со взрывом ртутной аппаратуры, в которой металлическая ртуть или сильно токсичные соединения ртути могут находиться под большим давлением и при температурах, значительно превышающие температуру их кипения. При этом рабочее помещение загрязняется мельчайшими каплями ртути или пылью ее ядовитых соединений. В связи с этим на рабочих местах для индивидуальной защиты необходимо иметь кислородные изолирующие приборы или промышленные противортутные противогазы марки "Г" (желто-черная коробка), которые в случае аварии надежно защищают работающих от отравлений.
При работе со ртутью очень важно выполнять меры личной профилактики, так как в противном случае никакие санитарно-технические мероприятия не предотвратят отравления. Работать со ртутью необходимо в накрахмаленной спецодежде, изготовленной из плотной белой ткани, наглухо завязанном сзади балом халате, не имеющем карманов, белой косынке или в белой шапочке.
Нельзя работать в валяной или мягкой суконной обуви. Кожанную или резиновую обувь рекомендуется защищать поливинилхлоридными чехлами; пользоваться этой одеждой можно только при работе со ртутью, а затем их нужно оставлять в гардеробной комнате.
По окончании работы, а также перед едой руки и лицо надо мыть теплой водой с мылом, а после работы принимать душ и чаще бывать в бане. При мытье горячей водой кожа очищается, что способствует удалению ртути из организма, так как она, в частности, выделяется и потовыми железами.
Нельзя курить, принимать пищу и пить молоко на рабочем месте, это надо делать в специально отведенных для этого помещениях. Во время перерывов в работе следует находиться на свежем воздухе, а там, где это возможно, - заниматься производственной гимнастикой; систематические занятия физкультурой и спортом повышают сопротивляемость организма вредным воздействиям ртути, укрепляют нервную систему.


Наряду с профилактическими мероприятиями общего характера известны медикаментозные способы предупреждения ртутных отравлений, использующие различные фармакологические препараты, повышающие общую сопротивляемость организма отравлению. В частности, в качестве средств индивидуальной профилактики, в последнее время начинают применять тиоловые соединения, среди которых наибольшей антидотной активностью обладает 2,3- димеркаптопропансульфонат натрия, так называемый унитиол.
Этот препарат малотоксичен, способствует улучшению обмена веществ и увеличивает общую сопротивляемость организма. Препарат, введенный до начала поступления в организм паров ртути, впоследствии связывает ртуть и предотвращает отравления, а при введении в условиях хронической интоксикации способствует быстрому и более полному удалению ртути из организма, особенно в начальный период введения.

Первая помощь при ртутных отравлениях.
Случаи попадания в организм значительных количеств металлической ртути очень редки, тогда как острые отравления парами ртути или ее соединениями встречаются гораздо чаще.
При ингаляционных отравлениях парами ртути пострадавшего выводят из зоны поражения и подвергают лечению. Для этого используют 5%-ный раствор унитиола, применяя его для подкожных или внутривенных инъекций. Кроме унитиола внутривенно вводят 10 мл 10%-ого раствора хлорида кальция, 20-40 мл 40%-ного раствора глюкозы и 10 мл 20%-ного раствора тиосульфата натрия.
При острых отравлениях солями ртути в результате их попадания в желудок в организм вводят унитиол и одновременно дают antidotum metallorum. В 1 л этого препарата содержится 3,75 г сульфата магния, 12,5 г бикарбоната натрия, 1 г едкого натра и 0,4% сероводорода.
При отсутствии antidotum metallorum желудок обильно промывают водой, содержащей 20-30 г активированного угля, или белковой водой, после этого дают молоко, яичный белок, взбитый с водою и, наконец, слабительное. Для промывания желудка рекомендуется также 5%-ный раствор ронгалита.
При отравлениях ртутью или ее соединениями рот полощут слабым раствором бертолетовой соли или 5%-ным раствором хлорида цинка.
Кроме унитиола для оказания первой помощи и лечения применяют и другие дитиоловые соединения, например, 2,3-димеркаптопропанол - так называемый
БАЛ.


В последнее время, наряду с перчисленными препаратами для лечения интоксикаций ртутью и другими тяжелыми металлами, а также для профилактических целей используют соли аминополикарбоновых кислот, которые относятся к группе хелатов или комплексообразователей (комплексоны). При применении комплексонов усиливается выведение ртути из организма, причем освобождение организма от депонированной ртути сопровождается нормализацией нарушенных окислительно-восстановительных процессов.

Заключение

Среди вредных химических веществ, загрязняющих окружающую среду, особое место принадлежит ртути. Во всех странах мира она включена в списки загрязняющих веществ 1-го класса опасности. В непроизводственных условиях основные пути воздействия ртути на человека связаны с воздухом, пищевыми продуктами, питьевой водой. Возможны и другие, нередкие в обыденной жизни пути влияния, - через кожу, при купании в загрязненной воде, при контакте с загрязненными поверхностями и т. д.
Список литературы

1. Артамонова В.Г., Шаталов Н.Н. Профессиональные болезни. М.:Медицина, 1988

2. Руководство по гигиене труда под ред. акад. Н.Ф.Измерова. М.:Медицина, 1987


1. Реферат на тему Midsummer Nights Essay Research Paper Everyone thinks
2. Диплом на тему Бухгалтерский учет издержек обращения на малых предприятиях на примере ООО Пульсар
3. Задача Задача нормального распределения сырья между филиалами в среде Excel
4. Реферат Инвестиционная политика предприятия 8
5. Реферат Веховство
6. Реферат на тему Таможенные режимы
7. Реферат на тему Douglass Essay Research Paper DouglassIn Frederick Douglass
8. Реферат на тему Led Zeppelin Essay Research Paper David Busi
9. Реферат Ребрендинг бренду Причини суть та методи
10. Реферат на тему The Storm By Kate Chopin Essay Research 2