Реферат

Реферат Физические основы рентгеноскопии,рентгенографии,рентгенотерапии

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 21.9.2024



ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧЕРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

"САМАРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РОССИЙСКОЙ ФЕДИРАЦИИ"

ИНСТИТУТ СЕСТРИНСКОГО ОБРАЗОВАНИЯ
РЕФЕРАТ

 

ПО ДИСЦИПЛИНЕ: ФИЗИКА
НА ТЕМУ: «ФИЗИЧЕСКИЕ ОСНОВЫ РЕНТГЕНОСКОПИИ,

РЕНТГЕНОГРАФИИ, РЕНТГЕНОТЕРАПИИ

».

ПРОВЕРИЛ (А):                                                                                   ВЫПОЛНИЛА: СТУДЕНТКА                                   

ПРИХОДЧЕНКО Т.В.                                                                           1  КУРСА 7 ГРУППЫ

                                                                                                                 ЩЕГЛОВА ТАТЬЯНА

                                                                                                                 АЛЕКСАНДРОВНА
                                                                   ПЕНЗА 2009
СОДЕРЖАНИЕ:

1.Введение

2. Понятие и физические основы рентгеновских методов контроля.

3. Применение рентгеновского излучения в медицине

    3.1 рентгеноскопия

    3.2 рентгенография

    3.3 рентгенотерапия
1. ВВЕДЕНИЕ

Древняя латинская поговорка гласит:"Diagnosis cetra - ullae therapiaefundamentum" ("Достоверный диагноз - основа любого лечения"). На протяжении многих веков усилия врачей были направлены на решение труднейшей задачи - улучшение распознавания заболеваний человека. Потребность в методе, который позволил бы заглянуть внутрь человеческого тела, не повреждая его, была огромной, хотя и не всегда осознанной. Ведь все сведения, касающиеся нормальной и патологической анатомии человека, были основаны только на изучении трупов. После того, как в Европе стали широко изучаться вскрытия трупов, врачи смогли изучить строение органов человека, а также изменения, которые они претерпевают при тех или иных заболеваниях. Какую огромную пользу принес бы непосредственный осмотр человеческого организма, если бы он стал вдруг "прозрачным"! И вряд ли кто-нибудь из ученых прошлого мог предположить, что эта мечта вполне осуществима. Потребность увидеть не оболочку, а структуру организма живого человека, его анатомию и физиологию была столь насущной, что, когда чудесные лучи, позволявшие осуществить это на практике, были наконец открыты, обычно консервативные и часто недоверчивые к новшествам врачи почти сразу поняли, что в медицине наступила новая эра.
2. Понятие и физические основы рентгеновских методов контроля.

Электроны. Атом состоит из положительно заряженного ядра и окружающего его отрицательно заряженных частиц- электронов. Электроны движутся вокруг ядра по определенным орбитам, причем в атоме каждого элемента содержится определенное число электронов, соответствующее порядковому номеру этого элемента в Менделеевской системе. Более сложным является строения ядра атома, изучение которого служит предметом ядерной физики.

 Катодные лучи. Открытие катодных лучей тесно связано с изучением прохождения электрического тока через разреженные газы. При нормальном атмосферном давлении воздух не является проводником электричества, тогда как в разреженном состоянии он приобретает эту способность. Если через сосуд с разреженным воздухом пропускать ток достаточно высокого напряжения, то возникает свечение газа - Гейслерово свечение. При определенной степени разряжении газа свечение в сосуде прекращается, го появляется пучок фиолетовых лучей, исходящих из отрицательного полюса трубки и направляющихся к положительному полюсу. Это так называемые катодные лучи.

   Катодные лучи были открыты Плюкером в 1859 году. Катодные лучи состоят из отрицательно заряженных элементарных частиц электронов. Катодные лучи обладают свойством распространяться и, ударяясь о противоположную стенку сосуда, вызывать ее свечение. Пучок катодных лучей отклоняется от своего направления магнитом. При приближении отрицательного полюса катодные лучи отклоняются в противоположную сторону ; при приближении положительного- в сторону магнита.

В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. Было установлено, что это излучение обладает целым рядом удивительных свойств. Во-первых, невидимое для человеческого глаза рентгеновское излучение способно проникать сквозь непрозрачные тела и предметы. Во-вторых, оно способно поглощаться веществами тем интенсивнее, чем больше их атомный (порядковый) номер в периодической системе Менделеева. В-третьих, рентгеновское излучение вызывает свечение некоторых химических веществ и соединений. В-четвёртых, рентгеновские лучи обладают линейным характером распространения. Эти свойства рентгеновских лучей и используются для получения информации о внутреннем содержании и строении "просвечиваемых" ими объектов без их вскрытия.

   Рентгеновские лучи в "табеле о рангах"- шкале электромагнитных волн, - имея диапазон длин волн от 0,06 до 20 ангстрем (IA=10-10 м), занимает место между ультрафиолетовым излучением и гамма-лучами  и характеризуется энергией квантов от единиц килоэлектронвольт до сотен мегаэлектронвольт. Рентгеновское излучение образуется двумя путями. Первый - в результате торможения быстро движущихся электронов в веществе, так называемое "тормозное" излучение. Второй – в результате изменения энергетического состояния атомов вещества, т.н. "характеристическое" излучение.                                                                                                                        

   Рентгеновское излучение- вид электромагнитных колебаний, возникающих при резком торможении ускоренных электронов в момент их столкновения с атомами вещества анода рентгеновской трубки, либо при перестройке электронных оболочек атома. По своей сущности R-лучи - электромагнитные колебания. 

  Физику явлений можно показать на примере работы рентгеновской трубки, как специального электровакуумного высоковольтного прибора, предназначенного для генерирования рентгеновского излучения.

    Фокусировка потока электронов в узкий пучок достигается оптимальным выбором электрического поля в межэлектродном пространстве. Направляющиеся от катода к аноду электроны бомбардируют анод, на поверхности тела которого происходит их резкое торможение, образуя таким образом тормозное излучение непрерывного спектра. Интенсивность его зависит от величины ускоряющего напряжения и атомного номера материала мишени анода. Чем выше атомный номер материала мишени, тем сильнее тормозятся в нём электроны. Поэтому, как правило, на изготовление анода идут материалы типа вольфрама, имеющие, кроме этого, высокую точку плавления и хорошую теплопроводность. Интенсивность тормозного излучения характеризуется так называемой "лучевой отдачей" рентгеновской трубки, зависящей, главным образом, от величины питающего трубку напряжения и уровня предварительной фильтрации излучения.

     Оптические свойства рентгеновской трубки определяются формой и размерами оптического фокуса трубки, а также углом раствора пучка излучения. Кроме тормозного излучения при бомбардировке анода электронами возникает характеристическое рентгеновское излучение, вызванное, как уже говорилось, изменением энергетического состояния атомов. Если один из электронов внутренней оболочки атома выбит электроном или квантом тормозного излучения, то атом переходит в возбужденное состояние. Освободившееся место в оболочке заполняется электронами внешних слоев с меньшей энергией связи. При этом атом переходит в нормальное состояние и испускает квант характеристического излучения с энергией равной разности энергии на соответствующих уровнях. Частота характеристического рентгеновского излучения связана с атомным номером (Z) вещества анода. В отличие от непрерывного спектра тормозного рентгеновского излучения длины волн характеристического рентгеновского излучения имеют вполне определённые для данного материала анода значения.

  При прохождении через исследуемое вещество пучок рентгеновского излучения ослабляется вследствие взаимодействия его с электронами, атомами и ядрами вещества. Основные процессы взаимодействия рентгеновского излучения с веществом при энергии квантов электромагнитного поля (фотонов) - менее 106 эВ - это фотоэлектрическое поглощение и рассеяние. Физика явлений при этом совершенно адекватна физике образования рентгеновского излучения.

  Фотоэлектрическое поглощение рентгеновского излучения происходит при взаимодействии фотонов рентгеновского излучения с атомами вещества. Фотоны, попадая на атомы, выбивают электроны с внутренней оболочки атома. При этом первичный фотон полностью расходует свою энергию на преодоление энергии связи электрона в атоме и сообщает электрону кинетическую энергию. В результате энергетической перестройки атома, происходящей после вылета из атома фотоэлектрона, образуется характеристическое рентгеновское излучение, которое при взаимодействии с другими атомами может вызывать вторичный фотоэффект. Этот процесс будет происходить до тех пор, пока энергия фотонов не станет меньше энергии связи электронов в атоме. Очень важно отметить, что процесс ослабления излучения при прохождении через вещество зависит не только от энергии фотонов и длины волны излучения, но и от атомного номера вещества, в котором происходит фотоэлектрическое поглощение.

  Образующееся при прохождении через вещество рассеянное излучение либо обусловлено тем, что под действием электрического поля электроны получают переменное ускорение, в результате которого они сами излучают электромагнитные волны с частотой, совпадающей с частотой первичного излучения и изменённым направлением излучения, (так называемое - когерентное рассеяние), либо обусловлено взаимодействием фотонов со свободными или слабо связанными электронами атома вещества (так называемое - комптоновское рассеяние).

   Таким образом, в результате фотоэлектрического поглощения рентгеновского излучения в веществе и рассеяния - часть энергии первичного излучения остаётся в виде характеристического и рассеянного излучения, часть энергии поглощается, а часть - преобразуется в энергию заряженных частиц - электронов.

   Прошедшее через предмет или вещество рентгеновское излучение ослабляется в различной степени в зависимости от распределения плотности их материала. Таким образом, оно несёт информацию о внутреннем строении объекта, т.е.образует рентгеновское изображение просвечиваемого объекта, которое затем преобразуется в адекватное оптическое изображение воспринимаемое глазами оператора. Возникающее рассеянное излучение не несёт информации о внутреннем строении предмета и только ухудшает качество формируемого изображения.

  Основными требованиями к преобразователям рентгеновского изображения являются: максимальная информативность рентгеновского изображения при минимально возможной поглощённой дозе излучения просвечиваемым объектом и оптимальное преобразование рентгеновского изображения в оптическое, обеспечивающее получение оператором максимума информации, содержащейся в теневом рентгеновском изображении.

   Качество рентгеновского изображения в основном определяется: контрастностью, яркостью, не резкостью и разрешающей способностью.

   Контрастность изображения тем выше, чем меньше уровень рассеянного излучения. Реальные источники излучения дают расходящийся пучок лучей, выходящий из фокусного пятна анода рентгеновской трубки, причём интенсивность рентгеновского излучения убывает обратно пропорционально квадрату расстояния от фокуса рентгеновской трубки. Для получения большей интенсивности излучения в плоскости наблюдательного экрана и, следовательно, большей яркости свечения экрана при заданной мощности рентгеновской трубки выгодно максимально приближать фокус трубки и экран к исследуемому объекту. Однако в зависимости от расстояния от фокуса трубки до поверхности просвечиваемого объекта и от поверхности объекта до преобразователя рентгеновского изображения (экрана) возникает искажение геометрических соотношений в теневом рентгеновском изображении: одинаковые по размерам структуры элементов, находящихся на разных расстояниях до фокуса рентгеновской трубки, дают существенно различные по форме и площади тени. Поскольку размеры фокусного пятна трубки имеют конечную величину, переход от наибольшей яркости изображения к области полной тени происходит постепенно - вместо резкой границы образуется переходная область полутени. Контраст, обеспечивающий заданную вероятность обнаружения объекта и определяемый заданными параметрами изображения, а также условиями зрительной работы, принято называть пороговым контрастом. Этот параметр очень значим, т.к. практически оператор не знает того, где и когда в поле его зрения появится "запрещённый" объект. Кроме того, в поле зрения оператора представляется одновременно нескольких объектов, часть из которых он должен опознать по известным признакам с учётом таких факторов как определённое ограничение времени наблюдения (особенно при конвейерном способе контроля), побочные возбуждения оператора в производственных условиях, а также наличие шумов на изображении и его определённая не резкость.

 Не резкость изображения определяется явлением рассеяния и конечными размерами фокусного пятна трубки. Не резкость тем больше, чем ближе трубка к просвечиваемому объекту и чем дальше находится от объекта преобразователь рентгеновского изображения (экран). При просвечивании движущегося объекта на не резкость его изображения накладывается так называемая динамическая не резкость, обусловленная инерционностью элемен­тов системы визуализации рентгеновского изображения. К плавным переходам интенсивности между соседними участками рентгеновского излучения (не резкости) может привести и сама внутренняя структура просвечиваемого объекта, толщина элементов которого может изменяться постепенно.

 Яркость изображения - это отношение силы света элемента излучающей поверхности к площади проекции этого элемента на плоскость, перпендикулярную направлению наблюдения. Яркость изображения в значительной степени, кроме мощности источника рентгеновского излучения, зависит от свойств применяемых рентгеновских экранов и детекторов, которые характеризуются достаточно высокими параметрами энергетического выхода люминесценции, высоким уровнем поглощения и высоким коэффициентом спектрального соответствия глазу человека (только при рентгеноскопии).

 Разрешающая способность - это способность давать чёткие раздельные изображения двух близких друг к другу мелких объектов. Пределом разрешения называется наименьшее линейное (для досмотровой рентгеновской техники) или угловое расстояние между двумя объектами, начиная с которого их изображения сливаются. В практике принято оценивать величину разрешающей способности числом линий на 1мм, причём толщина линий равна толщине промежутков между ними.
3. Применение рентгеновского излучения в медицине  для диагностики и лечения основано на его способности:

          1)проникать через различные вещества, в том числе через органы и ткани человеческого тела, не пропускающие лучи видимого света;

          2) вызывать флюоресценцию- свечение некоторых химических соединений (активированные сульфиды цинка и кадмия, платино- синеродистый барий ) На этом свойстве основано R-просвечивание, а также  использование усиливающих экранов при рентгенографии.

         3) оказывать фотохимическое воздействие: разлагать соединения серебра с галогенами и вызывать почернение фотографических слоев (в т.ч. R-графической пленки)

         4) вызывать физиологические и патологические(в зависимости от дозы) изменения в облученных органах и тканях(оказывать биологическое действие).На этом свойстве основано использование R-излучения для лечения опухолевых и некоторых неопухолевых заболеваний, однако при недостаточно контролируемом облучении в больших дозах возможно развитие острой и подострой лучевой болезни, либо лучевых поражений.

         5) передавать энергию излучения атомам и молекулам окружающей среды, вызывая их возбуждение, а также распад на положительные и отрицательные ионы – ионизационное действие. При определенных условиях между ионизационным эффектом и дозой облучением существует прямая зависимость. Это позволяет, оценивая с помощью специальных приборов(дозиметров) степень ионизации воздуха, определить количество и качество R-лучей, применяемых для диагностики и лечения.
3.1 Рентгеноскопия является методикой исследования, при котором R-изображение получается на специальном флюоресцирующем экране, покрытом цинк-кадмий сульфидными солями. Рентгеноскопия проводится в темном помещении. Достоинством является то, что на экране получает свое отображение не только анатомическая структура исследуемых органов, но и их двигательная функция.

    Теневое изображение, возникающее на экране во время просвечивания, является прямым (позитивным).

   В зависимости от области исследования напряжение на трубке при просвечивании 50-90кВ, ток 2-4мА.

    Недостатками является- относительно низкая информативность, в следствии малой яркости свечения экрана. Длительное изучение R-изображения во время просвечивания сопровождается значительной лучевой нагрузкой на больного и медицинский персонал. Весьма неудобной является необходимость проводить просвечивание в темной комнате. После просвечивания не остается документа, помогающего специалистам. Просвечивание широко применяется главным образом при исследовании желудочно-кишечного тракта.

    Рентгеноскопия дает возможность изучить функцию органа - пульсацию сердца, дыхательные движения ребер, легких, диафрагмы, перистальтику органов пищеварительного тракта и т.д. Она позволяет наблюдать функциональные отклонения в деятельности различных органов при разнообразных патологических процессах. Рентгенология открыла широкие перспективы для изучения физиологии различных органов. Она дала возможность видеть непосредственно работу сердца, легких, пищеварительного тракта.
    3.2  Рентгенография - основная методика рентгенологического исследования.

         Изображение исследуемого объекта возникает на светочувствительном слое рентгенографической пленке. Основное достоинство рентгенографии - это высокая разрешающая способность. На рентгенограммах значительно отчетливей, чем на флюоресцирующем экране, отображаются элементы структур различных органов. Исследование проводится в светлом помещении. Методика проста и при умелом выполнении не обременительна для больных.

   Рентгенография является методом выбора при всех заболеваниях костей и суставов, а так же при заболеваниях легких. Рентгеновский снимок фиксирует состояние органа или ткани лишь в момент съемки, однако он является объективным документом, по которому можно судить о болезненном процессе в данный момент, и спустя многие годы, что является превосходством перед рентгеноскопией. Однако однократная рентгенограмма фиксирует только анатомические изменения в определенный момент, она дает статику процесса; посредством серии рентгенограмм, произведенных через определенные промежутки времени, можно изучить динамику процесса, то есть функциональные изменения.

    При изучении патологии некоторых органов следует использовать одновременно оба метода рентгенологического исследования: рентгеноскопию и рентгенотерапию. Такое комбинированное исследование в особенности необходимо при заболеваниях легких, пищеварительного тракта и, весьма часто, - при заболеваниях сердечно сосудистой системы.

  Большое распространение в настоящее время получили такие методы диагностики как томография и флюорография.

Томография является особым методов рентгенографии, позволяющим производить послойное рентгенологическое исследование органов человеческого тела с помощью средств лучевой диагностики. Различают методы томографии с использованием ионизирующего излучения, т.е. с облучением пациентов (обычная рентгеновская, или так называемая классическая, компьютерная рентгеновская и радионуклиидная, или эмиссионная компьютерная, томография), и не связанные с ним (ультразвуковая и магнитно-резонансная томография). За исключением обычной рентгеновской, при всех видах томографии изображение получают с помощью встроенных в аппараты ЭВМ (компьютеров).

   Флюорография также является разновидностью рентгенографического исследования. Она проводится с помощью специального аппарата - флюорограф, позволяющего сделать рентгеновский снимок на малоформатную фотопленку, и применяется для массового профилактического обследования населения.  Флюорограф рассчитан в основном на исследование органов грудной полости. Однако их применяют и для исследования костно-суставного аппарата, лицевой части черепа, желудочно-кишечного тракта.

   Немного о методе рентгенокимографии – вспомогательном методе рентгенологического исследования, применяемого для функциональной диагностики и заключающейся в регистрации кривых движения или перемещения определенных точек на контуре того или иного органа. Движущийся орган (например, сердце) снимается посредством узкого пучка рентгеновских лучей, пропускаемых через щель в свинцовой пластинке на перемещающейся с равномерной скоростью рентгеновской пленке. Метод применяется для изучения сокращений сердца и пульсации кровеносных сосудов, для регистрации дыхательных движений ребер и диафрагмы, а также сокращений стенок заполненных контрастным веществом пищевода, желудка и петель кишок, почечных лоханок и мочеточников и др. Наибольшее диагностическое значение этот метод имеет для объективной оценки анатомических и функциональных изменений отдельных участков сердечной мышцы после перенесенного инфаркта миокарда.
3.3  Рентгенотерапия— раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20—60 кв и кожно-фокусном расстоянии 3—7 см (короткодистанционная рентгенотерапия) или при напряжении 180—400 кв и кожно-фокусном расстоянии 30—150 см (дистанционная рентгенотерапия).
Применение рентгенотерапии
Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях.

Лучевая терапия.

Основным принципом лучевой терапии является создание достаточной дозы в области опухоли для полного подавления ее роста при одновременном щажении окружающих тканей.

В основу классификации методов лучевой терапии положено деление их по виду ионизирующего излучения (гамма-терапия, рентгенотерапия, электронная терапия). Целесообразно рассматривать методы лучевой терапии не только в зависимости от вида ионизирующего излучения, но и от способа его подведения к патологическому очагу. Большой арсенал методов лучевой терапии позволяет индивидуализировать лечение и применять тот или иной способ облучения в зависимости от общего состояния больного, локализации, глубины залегания и распространенности опухолевого процесса.

Ускорители и изотопные установки в лучевой терапии.

Используемые в практике лучевой терапии сверхвысоковольтные и изотопные установки, начиная с 1945 г. претерпели коренные изменения. Вскоре после 1951 г., когда впервые появились установки с источником Со60, они начали применяться во многих лечебных центрах. Конструкция этих установок непрерывно совершенствовалась, и в настоящее время создано много различных типов изотопных установок, которые в значительной мере могут заменить используемую ранее терапевтическую аппаратуру.

Много сведений из области ядерной физики дали эксперименты по бомбардировке ядер атомов частицами большой энергии. Известно, что средняя энергия связи на частицу в ядре равна примерно 8 Мэв. Силы, связывающие протоны с протонами, нейтроны с нейтронами и протоны с нейтронами, ''упакованными'' в ядрах, очень велики и в настоящее время еще не достаточно изучены. Имеются данные, указывающие на то, что ядерные силы отчасти сходны с обменными силами водородной связи, где один электрон взаимодействует с двумя положительными зарядами. Аналогичным образом силы связи между частицами внутри ядер могут быть обусловлены взаимодействием мезона с двумя частицами. До последнего времени источником мезонов являлись только космические лучи, поэтому изучение мезонов связано с большими экспериментальными трудностями. Успехи в изучении ядерных сил позволили создать установки, генерирующие интенсивные пучки мезонов; в настоящее время получена возможность ускорять частицы до энергий более 30000 Мэв. Эти установки чрезвычайно дороги в строительстве и эксплуатации; некоторые из них, созданные вначале для решения задач ядерной физики, стали ценными в лучевой терапии.


Влияние дозы при воздействии излучений высокой энергии.

 Для использования в практике лучевой терапии, исходя из физических определений, могут быть даны определения доз излучений, которые учитывают основные клинические условия. Так, под понятием входная доза понимают дозу излучений, измеренную в воздухе на определенном расстоянии между источником излучения и поверхностью тела. Особый клинический интерес представляют показания о величине дозы, которая проявляет свое действие в определенных участках тканей. Такая эффективная доза с физической точки зрения определяется как величина энергии, которая поглощается в определенном участке тела. Эффективная доза, измеренная на поверхности тела, называется поверхностной дозой, а измеренная в определенных слоях ткани —глубинной.


Величина поверхностной дозы определяется не только входной дозой, но также и рассеянным излучением, которое возникает в тканях. Величина поверхностной дозы зависит от природы излучений, их энергии и объема облучаемого участка тела. Объем облучаемого участка определяется величиной поля облучения и толщиной данного участка тела.

Для определения эффективной дозы в том или ином участке тела важно знать данные о пространственной, объемной и интегральной дозах, т. е. о суммарной величине энергии, поглощенной в определенном объеме тела. Терапевтическая эффективность излучений определяется в первую очередь очаговой дозой, т.е. эффективной дозой в патологическом очаге. Если ее сопоставить с дозой в облученном объеме тела, то можно получить величину относительной очаговой пространственной дозы.

Различия в распределении дозы при воздействии обычных рентгеновых лучей и излучений высокой энергии становятся особенно отчетливыми при учете относительных глубинных доз, т. е. отношения глубинной к максимальной или поверхностной дозе. При воздействии излучений высокой энергии, учитывая особенности распределения дозы, отношение глубинной к максимальной дозе выражают в виде относительной глубинной дозы. В противоположность этому при воздействии обычных рентгеновых лучей под относительной глубинной дозой чаще понимают отношение глубинной дозы к поверхностной. Сопоставление этих двух величин относительных доз вполне возможно, так как в случае применения обычных рентгеновых лучей поверхностная доза почти совпадает с максимальной.
 Функциональные и морфологические изменения в клетках, возникающие в результате воздействия излучений

Первичные физические и химические процессы, развивающиеся в дифференцированных биологических структурах при облучении, в основном сходны с действием излучений на неживое вещество. В настоящее время лишь в немногих случаях удается понять сущность действия излучений во всех его деталях. В еще большей мере это положение относится к тем последующим процессам, которые вызывают переход первичных лучевых проявлений в видимые биологические эффекты. Поэтому радиобиологи неизбежно вынуждены довольствоваться во многих случаях лишь описанием качественной и количественной стороны этих процессов.

Живые существа на воздействие излучений реагируют различно, причем развитие лучевых реакций во многом зависит от дозы излучений. Поэтому целесообразно различать: 1) воздействие малых доз, примерно до 10 рад; 2) воздействие средних доз, обычно применяемых с терапевтическими целями, которые граничат своим верхним пределом с воздействием высоких доз. При воздействии излучении различают реакции, возникающие немедленно, ранние реакции, а также поздние (отдаленные) проявления. Конечный результат облучения часто во многом зависит от мощности дозы, различных условий облучения и особенно от природы излучений. Это относится также к области применения излучений в клинической практике с лечебными целями. На основе изучения радиобиологических реакций простейших организмов можно более глубоко понять все те сложные взаимоотношения, которые возникают в организме человека в результате облучения. Особый интерес в этом отношении представляют лучевые реакции, развивающиеся в одноклеточных организмах. Однако следует иметь в виду, что при изучении одноклеточных организмов исключаются те сложные взаимоотношения, которые обусловлены нервной регуляцией между отдельными органами и системами.

Для количественной оценки действия разных видов излучений практическое значение имеет понятие об относительной биологической эффективности (ОБЭ). Одно из определений ОБЭ, которое более целесообразно применять в этом разделе, заключается в следующем: под относительной биологической эффективностью одного вида излучений к другому понимают соотношение величины дозы второго вида излучений к первому, которые необходимы для получения одинакового биологического действия.

Согласно другому определению, под ОБЭ понимают соотношение радиационных эффектов (измеренных в определенных единицах), которые возникают в организме в результате воздействия одинаковых доз излучений первого и второго вида.

В результате облучения могут наблюдаться следующие основные виды клеточных реакций: угнетение деления, разные типы хромосомных аберраций и различные летальные эффекты.

Угнетение клеточного деления относится к функциональным неспецифическим клеточным нарушениям, носит временный, обратимый характер и может наблюдаться как у одноклеточных организмов, так и у клеток, составляющих ткани высших организмов. Как правило, угнетение клеточного деления является результатом воздействия малых доз излучения. При воздействии больших доз клеточное деление полностью прекращается и приводит к бесплодию.

В результате облучения очень большого количества однотипных клеток установлено, что при воздействии разных видов излучений длительность обратимого угнетения клеточного деления и процент клеток, у которых деление полностью прекратилось, возрастают по мере увеличения дозы излучения. С увеличением дозы излучений все большее число клеток теряет способность к размножению или по крайней мере у них временно прекращается процесс деления. Одним из показателей нарушения этой способности клеток к размножению как у одноклеточных, так и у клеток тканей высших организмов является возникновение гигантских форм клеток.

Функции обмена веществ у клеток всей популяции, которые полностью стали стерильными, вначале могут быть в значительной степени сохранены. Такие клетки во многих отношениях еще не отличаются от необлученных. Например, облученные бактериофаги фагоцитируют бактерий, как и обычно; следовательно, бактериофаги в таких случаях могут служить еще нормальным хозяином. Лишь при очень высоких дозах облучения, порядка 10^5—10^6 рад, в результате внезапно наступающих тяжелых нарушений обмена наступает быстрая гибель как одноклеточных организмов, так и клеток высших организмов.

Некоторые радиационно-биохимические изменения появляются уже после воздействия относительно малых доз, другие изменения наступают лишь в результате воздействия средних или высоких доз излучений. Среди нарушений обмена веществ, возникающих при воздействии ионизирующих излучений, на первое место следует поставить нарушение самого радиочувствительного субстрата—нуклеиновых кислот. Лучевые поражения в виде угнетения синтеза нуклеиновых кислот нельзя рассматривать как непосредственную причину угнетения клеточного деления или разрыва хромосом, которые могут привести к их грубым морфологическим нарушениям, определяемым при митозах после облучения. Нарушения других видов обмена, например углеводного, дают право говорить об его очень низкой радио чувствительности. Изменения углеводного обмена после облучения, в частности угнетение анаэробного гликолиза, становятся заметными, как правило, лишь после воздействия в дозах порядка 5000—20000 р.; нарушение клеточного дыхания обычно наблюдается в результате воздействия еще больших доз—от 20000 до 100000 р.

Цитостатический эффект облучения относится к функциональным лучевым реакциям; он зависит от природы излучений, следовательно, от линейной потери энергии (ЛПЭ). В прямой зависимости от величины ЛПЭ находится изменение относительной биологической эффективности. Эти соотношения, очевидно, можно связать с «эффектом насыщения», который наблюдается при радиохимических реакциях. При прямом действии обычных рентгеновых лучей, а в определенных случаях и при косвенном, отмечается аналогичное уменьшение выхода некоторых радиохимических реакций по сравнению с воздействием таких видов ионизирующих излучений, как нейтроны, или а-частицы, характеризующиеся высокой плотностью ионизации.

В противоположность этому при воздействии излучения с очень низкой величиной ЛПЭ (у-излучение, быстрые электроны) нередко проявляется другой феномен: появляется зависимость относительной биологической эффективности от величины дозы излучения. Это имеет место также при действии одной частицы, проходящей через радиочувствительные структуры, при сравнении с эффектом многих частиц, производящих меньшую плотность ионизации («аккумуляция попаданий»). Таким образом, при определенных значениях ЛПЭ обнаруживается менее выраженная зависимость максимума цитостатического эффекта от величины дозы излучений (Gray и др.).

При воздействии малых доз излучении наблюдается угнетение клеточного деления. При больших дозах клетки окончательно теряют способность к размножению. Временное угнетение митозов и полная стерильность не могут быть обусловлены единым механизмом, несмотря на то, что оба эти явления на первый взгляд могут показаться вполне родственными.

Величины ОБЭ могут резко отличаться даже по отношению к одним и тем же биологическим объектам, если биологическую эффективность рассматривать по отношению к различным лучевым реакциям. Относительная биологическая эффективность меняется от объекта к объекту и в некоторых случаях, например при воздействии на определенные виды клеток в культурах тканей, при малой ЛПЭ существенно зависит от мощности дозы.

От качества излучений, кроме функциональных изменений, зависят также определенные виды лучевых хромосомных аберраций. В клеточных популяциях с митотическим делением клеток после облучения сначала отмечается кратковременное увеличение частоты митозов, а затем падение до определенной минимальной величины. Alberti и Politzer назвали такое явление «первичным эффектом излучений». Вслед за этим число делящихся клеток снова увеличивается при условии, что величина дозы излучений была не очень велика и не все клетки потеряли способность к размножению. Минимальное число митозов и время их появления зависят от величины дозы излучений. В случае облучения, раковых клеток, когда применяются обычные для лучевой терапии дозы, минимальное число митозов большей частью наблюдается через несколько часов Затем следует медленное повышение их числа, что определяется как «вторичный эффект излучений».

Для первичного и вторичного эффекта излучений характерны определенные типы хромосомных изменений. При первичном эффекте в клетках, еще сохраняющих митотическую активность, обнаруживаются преимущественно следующие типы хромосомных изменений: пикноз ядра, псевдоамитозы и склеивание хромосом, а также агглютинация хроматина.

В противоположность этому при вторичном эффекте наблюдаются главным образом структурные изменения хромосом. Хромосомные аберрации вторичного эффекта морфологически проявляются в клетках преимущественно в виде образования фрагментов и хромосомных мостиков.
Механизм хромосомных изменений при первичном и вторичном эффекте различен. Хромосомные изменения, типичные для первичного эффекта, возникают главным образом в тех клетках, которые во время облучения имели митотическую активность и находились в стадии метафаза. У определенного числа этих клеток наблюдаются митозы, частота которых снижается в результате облучения. У других митотически делящихся клеток, достигших или прошедших стадию метафазы, митозы продолжаются, но в более замедленном темпе.
 

  
Литература:
1. Никитин А.В., Гусманов В.А. Непосредственное исследование больного с основами синдромной диагностики: Учеб. Пособие - Воронеж: Издательство Воронежского университета, 1995. - 208 с. 2. Василенко В.Х. Пропедевтика внутренних болезней: /Учебник/ - 3-е изд., перераб. и доп. - М.: Медицина, 1989. - 512 с.

2. Х. Джонс Физика радиологии - М.: Атомиздат, 1965.-348 с.

3. Лучевая терапия с помощью излучений высокой энергии / под ред. И. Беккера, Г. Шуберта. – М.: Медицина, 1964. – 624 с.

4. И.А. Переслегин, Ю.Х. Саркисян Клиническая радиология – М.: Медицина, 1973. – 456 с.

5.Фанаржян В.А."Рентгенодиагностика"- М.:Медицина,1977.-256 с.

6.Кишковский А.Н., Тютин  Л.А. Медицинская рентгенотехника:(руководство).-М.:Медицина,1983-342 с.


1. Реферат на тему Особливості оподаткування нерезидентів
2. Реферат на тему Россия в 1894-1913 годах
3. Реферат Аллигаторы
4. Реферат Усач бронзовый сосновый
5. Реферат Автомобильный кран с решетчатой стрелой
6. Курсовая Расчет соединительной линии звукового вещания
7. Реферат Кислотно-щелочное равновесие крови
8. Реферат Сущность рынка и исследование особенностей рынка в современной экономики
9. Курсовая Маркетинговое исследование мобильного телефона Nokia 5800 и его конкурентоспособности
10. Реферат Разработка, принятие и изменение конституции