Реферат

Реферат Методы научного познания 2

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024





ОГЛАВЛЕНИЕ:
ВВЕДЕНИЕ…………………………………………………………….......................3 стр.

1.    Общенаучные методы эмпирического познания………………….....................6 стр.

1.1.          Научное наблюдение………………………………………………………….6 стр.

1.2.    Эксперимент…………………………………………………………………...8 стр.

1.3.    Измерение…………………………………………………………………….10 стр.

2. Общенаучные методы теоретического познания………………………………13 стр.

2.1.   Абстрагирование и идеализация. Мысленный эксперимент…...………….13 стр.

2.2.    Формализация. Язык науки………………………………………………….15 стр.

2.3.    Индукция и дедукция………………………………………………………...17 стр.

3. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания..……………………………………………………………………………20 стр.

3.1.    Анализ и синтез………………………………………………………………20 стр.

3.2.    Аналогия и моделирование………………………………………………….20 стр.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ………………………………..24 стр.
ВВЕДЕНИЕ
.


Понятие «метод» (от греч. «методос» - путь к чему-либо) означает совокупность приемов и операций практического и теоретического освоения действительности.

Метод вооружает человека системой принципов, требований, правил, руководствуясь которыми он может достичь намеченной цели. Владение методом означает для человека знание того, каким образом, в какой последовательности совершать те или иные действия для решения тех или иных задач, и умение применять это знание на практике.

Существует целая область знания, которая специально занимается изучением методов, которую принято именовать методологией. Методология дословно означает «учение о методах» (ибо происходит этот термин от двух греческих слов: «методос» - метод и «логос» - учение). Изучая закономерности человеческой познавательной деятельности, методология вырабатывает на этой основе методы ее осуществления. Важнейшей задачей методологии является изучение происхождения, сущности, эффективности и других характеристик методов познания.

Методы научного познания принято подразделять по степени их общности, т.е. по широте применимости в процессе научного исследования.

Всеобщих методов в истории познания известно два: диалектический и метафизический. Это общефилософские методы. Метафизический метод с середины XIX века начал все больше вытеснять из естествознания диалектическим методом.

Вторую группу методов познания составляют общенаучные методы, которые используются в самых различных областях науки, т.е. имеют весьма широкий междисциплинарный спектр применения. Классификация общенаучных методов тесно связана с понятием уровней научного познания.

Различают два уровня научного познания: эмпирический и теоретический. Эмпирический уровень научного познания характеризуется непосредственным исследованием реально существующих, чувственно воспринимаемых объектов. На этом уровне осуществляется процесс накопления информации об исследуемых объектах, явлениях путем проведения наблюдений, выполнения разнообразных измерений, постановки экспериментов. Здесь производится также первичная систематизация получаемых фактических данных в виде таблиц, схем, графиков и т.п. Кроме того, уже на втором уровне научного познания – как следствие обобщения научных фактов – возможно формулирование некоторых эмпирических закономерностей.

Теоретический уровень научного исследования осуществляется на рациональной (логической) ступени познания. На данном уровне происходит раскрытие наиболее глубоких, существенных сторон, связей, закономерностей, присущих изучаемым объектам, явлениям. Теоретический уровень – более высокая ступень в научном познании. Результатами теоретического познания становятся гипотезы, теории, законы.

Выделяя в научном исследовании указанные два различных уровня, не следует, однако, их отрывать друг от друга и противопоставлять. Ведь эмпирический и теоретический уровни познания взаимосвязаны между собой. Эмпирический уровень выступает в качестве основы, фундамента теоретического осмысления научных фактов, статистических данных, получаемых на эмпирическом уровне. К тому же теоретическое мышление неизбежно опирается на чувственно-наглядные образы (в том числе схемы, графики и т.п.), с которыми имеет дело эмпирический уровень исследования.

В свою очередь, эмпирический уровень научного познания не может существовать без достижений теоретического уровня. Эмпирическое исследование обычно опирается на определенную теоретическую конструкцию, которая определяет направление этого исследования, обуславливает и обосновывает применяемые при этом методы.

К третьей группе методов научного познания относятся методы, используемые только в рамках исследований какой-то конкретной науки или какого-то конкретного явления. Такие методы именуются частнонаучными. Каждая частная наука (биология, химия, геология и т.д.) имеет свои специфические методы исследования.

При этом частнонаучные  методы, как правило, содержат в различных сочетаниях те или иные общенаучные методы познания. В частнонаучных методах могут присутствовать наблюдения, измерения, индуктивные или дедуктивные умозаключения и т.д. Характер их сочетания и использования находится в зависимости от условий исследования, природы изучаемых объектов. Таким образом, частнонаучные методы не оторваны от общенаучных. Они тесно связанны с ними, включают в себя специфическое применение общенаучных познавательных приемов для изучения конкретной области объективного мира.

Частнонаучные методы связаны и со всеобщим диалектическим методом, который как бы преломляется через них. Например, всеобщий диалектический принцип развития проявился в биологии в виде открытого Ч. Дарвином естественно-исторического закона эволюции животных и растительных видов.

К сказанному остается добавить, что любой метод сам по себе еще не предусматривает успеха в познании тех или иных сторон материальной действительности. Важно еще умение правильно применять научный метод в процессе познания.
1.   
Общенаучные методы эмпирического познания.

1.1.        
Научное наблюдение


Наблюдение есть чувственное (преимущественно – визуальное) отражение предметов и явлений внешнего мира. Это – исходный метод эмпирического познания, позволяющий получить некоторую первичную информацию об объектах окружающей действительности.

Научное наблюдение (в отличие от обыденных, повседневных наблюдений) характеризуется рядом особенностей:

- целенаправленностью (наблюдение должно вестись для решения поставленной задачи исследования, а внимание наблюдателя фиксироваться только на явлениях, связанных с этой задачей);

- планомерностью (наблюдение должно проводиться строго по плану,  составленному исходя из задачи исследования);

- активностью (исследователь должен активно искать, выделять нужные ему моменты в наблюдаемом явлении, привлекая для этого свои знания и опыт, используя различные технические средства наблюдения).

Научные наблюдения всегда  сопровождаются описанием объекта познания. Описания результатов наблюдений образуют эмпирический базис науки, опираясь на который исследователи создают эмпирические обобщения, сравнивают изучаемые объекты по тем или иным параметрам, проводят классификацию их по каким-то свойствам, характеристикам, выясняют последовательность этапов их становления и развития.

Почти каждая наука проходит указанную первоначально, «описательную» стадию развития. При этом основные требования, которые предъявляются к научному описанию, направлены на то, чтобы оно было возможно более полным, точным и объективным.

По способу проведения наблюдения могут быть непосредственными и опосредованными.

При непосредственных наблюдениях те или иные свойства, стороны объекта отражаются, воспринимаются органами чувств человека.

В настоящее время непосредственное визуальное наблюдение широко используется в космических исследованиях как важный (а иногда и незаменимый) метод научного познания. Визуальное наблюдение с борта пилотируемой орбитальной станции – наиболее простой и весьма эффективный метод исследования из космоса параметров атмосферы, поверхности суши и океана.

Хотя непосредственное наблюдение продолжает играть немаловажную роль в современной науке, однако чаще всего научное наблюдение бывает опосредованным, т.е. проводится с использованием тех или иных технических средств.

Если, например, до начала XVII века астрономы наблюдали за небесными телами невооруженным взглядом, то изобретение Галилеем в 1608 году оптического телескопа подняло астрономические наблюдения на новую, гораздо более высокую ступень. А создание в наши дни рентгеновских телескопов и вывод их в космическое пространство на борту орбитальной станции позволили проводить наблюдения за такими объектами Вселенной, которые никаким другим путем.

Развитие современного естествознания связанно с повышением роли так называемых косвенных наблюдений. Так, объекты и явления, изучаемые ядерной физикой, не могут прямо наблюдаться ни с помощью органов чувств человека, ни с помощью самых совершенных приборов. То, что ученые наблюдают в процессе эмпирических исследований в атомной физике, - это не сами микрообъекты, а только результаты их взаимодействия на определенные технические средства исследования. Например, при изучении свойств заряженных частиц с помощью камеры Вильсона эти частицы воспринимаются исследователем косвенно – по таким видимым их проявлениям, как образование треков, состоящих из множества капелек жидкости.

Наблюдения могут нередко играть важную эвристическую роль в научном познании. В процессе наблюдений могут быть открыты совершенно новые явления, позволяющие обосновать ту или иную научную гипотезу.

Для получения каких-то выводов об исследуемом явлении, для обнаружения чего-то существенного в нем зачастую требуется проведение весьма большого количества наблюдений. Например, для получения даже краткосрочного прогноза погоды необходимо проводить огромное число наблюдений за различными метеорологическими параметрами атмосферы.
1.2. Эксперимент


Эксперимент — более сложный метод эмпирического познания по сравнению с наблюдением. Он предполагает активное, целенаправленное и строго контролируемое воз­действие исследователя на изучаемый объект для выявле­ния и изучения тех или иных его сторон, свойств, связей. При этом экспериментатор может преобразовывать иссле­дуемый объект, создавать искусственные условия его изу­чения, вмешиваться в естественное течение процессов.

Эксперимент включает в себя другие методы эмпириче­ского исследования (наблюдение, измерение). В то же время он обладает рядом важных, присущих только ему осо­бенностей.

Во-первых, эксперимент позволяет изучать объект в «очищенном» виде, т. е. устранять всякого рода побочные факторы, наслоения, затрудняющие процесс исследования. Например, проведение некоторых экспериментов требует специально оборудованных помещений, защищенных (экра­нированных) от внешних электромагнитных воздействий на изучаемый объект.

Во-вторых, в ходе эксперимента объект может быть поставлен в некоторые искусственные, в частности, экстре­мальные условия, т. е. изучаться при сверхнизких темпе­ратурах, при чрезвычайно высоких давлениях или, наобо­рот, в вакууме, при огромных напряженностях электромаг­нитного поля и т. п. В таких искусственно созданных условиях удается обнаружить удивительные, порой неожи­данные свойства объектов и тем самым глубже постигать их сущность.

В-третьих, изучая какой-либо процесс, экспериментатор может вмешиваться в него, активно влиять на его проте­кание. Как отмечал академик И.П. Павлов «наблюдение собирает то, что ему предлагает природа, опыт же берет у природы то, что хочет».

В-четвертых, важным достоинством многих экспери­ментов является их воспроизводимость. Это означает, что условия эксперимента, а соответственно и проводимые при этом наблюдения, измерения могут быть повторены столь­ко раз, сколько это необходимо для получения достоверных результатов.

Подготовка и проведение эксперимента требуют соблю­дения ряда условий. Так, научный эксперимент:

-               никогда не ставится «наобум», он предполагает нали­чие четко сформулированной цели исследования;

-               не делается «вслепую», он всегда базируется на каких-то исходных теоретических положениях;

-               не проводится беспланово, хаотически, предварительно исследователь намечает пути его проведения;

-               требует определенного уровня развития технических средств познания, необходимого для его реализации;

-               должен проводиться людьми, имеющими достаточно высокую квалификацию.

Только совокупность всех этих условий определяет успех в экспериментальных исследованиях.

В зависимости от характера проблем, решаемых в ходе экспериментов, последние обычно подразделяются на исследовательские и проверочные.

Исследовательские  эксперименты дают возможность обнаружить, у объекта новые, неизвестные свойства. Резуль­татом такого эксперимента могут быть выводы, не выте­кающие из имевшихся знаний об объекте исследования.

Проверочные эксперименты служат для проверки, под­тверждения тех или иных теоретических построений. Так, существование целого ряда элементарных частиц (позитро­на, нейтрино и др.) было вначале предсказано теоретиче­ски, и лишь позднее они были обнаружены эксперименталь­ным путем.

Исходя из методики проведения и получаемых резуль­татов, эксперименты можно разделить на качественные и количественные. Качественные эксперименты носят поис­ковый характер и не приводят к получению каких-либо количественных соотношений. Они позволяют лишь выя­вить действие тех или иных факторов на изучаемое явле­ние. Количественные эксперименты направлены на уста­новление точных количественных зависимостей в исследуе­мом явлении. В реальной практике экспериментального исследования оба указанных типа экспериментов реализу­ются, как правило, в виде последовательных этапов разви­тия познания.

Математической теории экс­перимента направлена на решение задачи по­лучения достоверного результата экспериментального исследования с минимальными затратами труда, времени и средств. В итоге достигается оптимизация работы экспе­риментатора при одновременном обеспечении высокого ка­чества экспериментальных исследований. А «высокое ка­чество эксперимента, — как подчеркивал академик П.Л. Ка­пица, — является необходимым условием здорового разви­тия науки».
1.3. Измерение

Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение — это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных тех­нических устройств.

Важной стороной процесса измерения является методи­ка его проведения. Она представляет собой совокупность приемов, использующих определенные принципы и средства измерений. Под принципами измерений в данном случае имеются в виду какие-то явления, которые положены в основу измерений (например, измерение температуры с ис­пользованием термоэлектрического эффекта).

Результат измерения получается в виде некоторого чис­ла единиц измерения. Единица измерения — это эталон, с которым сравнивается измеряемая сторона объекта или явления (эталону присваивается числовое значение «I»), Существует множество единиц измерения, соответствующее множеству объектов, явлений, их свойств, сторон, связей, которые приходится измерять в процессе научного позна­ния. При этом единицы измерения подразделяются на основные, выбираемые в качестве базисных при построении системы единиц, и производные, выводимые из других еди­ниц с помощью каких-то математических соотношений.

Кроме того, в физике появились так называемые естественные системы единиц. Их основные единицы опреде­лились из законов природы (это исключало произвол человека при построении указанных систем). Примером мо­жет служить «естественная» система физических единиц, предложенная в свое время Максом Планком. В ее осно­ву были положены «мировые постоянные»: скорость света в пустоте, постоянная тяготения, постоянная Больцмана и постоянная Планка. Исходя из них и приравняв их к «I», Планк получил ряд производных единиц (длины, массы, времени и температуры).

Основное значение подобных «естественных» систем единиц (к ним относятся также система атомных единиц Хартри и некоторые другие) состоит в существенном уп­рощении вида отдельных уравнений физики. Однако размеры единиц таких систем делают их малоудобными для практики. Кроме того, точность измерения основных еди­ниц подобных систем, необходимая для установления всех производных единиц, еще далеко не достаточна. В силу указанных причин предложенные до сих пор «естествен­ные» системы единиц не могут в настоящее время найти применения при решении вопроса об унификации единиц измерения.

Вопрос об обеспечении единообразия в измерении вели­чин, отражающих те или иные явления материального мира, всегда был очень важным. Отсутствие такого едино­образия порождало существенные трудности для научного познания.

Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени. Она охватывает физические величины механики, термодинамики, электро­динамики и оптики, которые связаны между собой физи­ческими законами.

Потребность в единой международной системе единиц измерения в условиях современной научно-технической революции очень велика. Поэтому такие международные организации, как ЮНЕСКО и Международная организация законодательной метрологии, призвали государства, явля­ющиеся членами этих организаций, принять вышеупомя­нутую Международную систему единиц и градуировать в этих единицах все измерительные приборы.

Существует несколько видов измерений. Исходя из ха­рактера зависимости измеряемой величины от времени, из­мерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается постоянной во времени (измерение размеров тел, постоянного давления и т. п.). К динамическим относят­ся такие измерения, в процессе которых измеряемая вели­чина меняется во времени (измерение вибраций, пульсирую­щих давлений и т. п.).

По способу получения результатов различают измере­ния прямые и косвенные. В прямых измерениях искомое значение измеряемой величины получается путем непос­редственного сравнения ее с эталоном или выдается изме­рительным прибором. При косвенном измерении искомую величину определяют на основании известной математиче­ской зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления про­водника по его сопротивлению, длине и площади попереч­ного сечения). Косвенные измерения широко используют­ся в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда пря­мое измерение дает менее точный результат.
2. Общенаучные методы теоретического познания
2.1. Абстрагирование и идеализация. Мысленный эксперимент.

Процесс познания всегда начинается с рассмотрения конкретных, чувственно воспринимаемых предметов и яв­лений, их внешних признаков, свойств, связей. Только в результате изучения чувственно-конкретного человек при­ходит к каким-то обобщенным представлениям, понятиям, к тем или иным теоретическим положениям, т.е. науч­ным абстракциям. Получение этих абстракций связано со

Абстрагирование, заключается в мыслен­ном отвлечении от каких-то — менее существенных — свойств, сторон, признаков изучаемого объекта с одновре­менным выделением, формированием одной или несколь­ких существенных сторон, свойств, признаков этого объек­та. Результат, получаемый в процессе абстрагирования, именуют абстракцией (или используют термин абстракт­ное — в отличие от конкретного).

В научном познаний широко применяются, например, абстракции отождествления и изолирующие абстракции. Абстракция отождествления представляет собой понятие, которое получается в результате отождествления некото­рого множества предметов (при этом отвлекаются от целого ряда индивидуальных свойств, признаков данных предметов) и объединения их в особую группу. Примером может служить группировка всего множества растений и животных, обитающих на нашей планете, в особые виды, роды, отряды и т. д. Изолирующая абстракция получает­ся путем выделения некоторых свойств, отношений, нераз­рывно связанных с предметами материального мира, в са­мостоятельные сущности («устойчивость», «растворимость», «электропроводность» и т. п.).

Мысленная деятельность исследователя в процессе на­учного познания включает в себя особый вид абстрагиро­вания, который называют идеализацией. Идеализация пред­ставляет собой мысленное внесение определенных измене­ний в изучаемый объект в соответствии с целями исследо­ваний.

В результате таких изменений могут быть, например, исключены из рассмотрения какие-то свойства, стороны, признаки объектов. Так, широко распространенная в механике идеализация, именуемая материальной точкой, подра­зумевает тело, лишенное всяких размеров. Такой абстракт­ный объект, размерами которого пренебрегают, удобен при описании движения. Причем подобная абстракция позво­ляет заменить в исследовании самые различные реальные объекты: от молекул или атомов при решении многих за­дач статистической механики и до планет Солнечной сис­темы при изучении, например, их движения вокруг Солнца.

Изменения объекта, достигаемые в процессе идеализа­ции, могут производиться также и путем наделения его какими-то особыми свойствами, в реальной действитель­ности неосуществимыми. Примером может служить вве­денная путем идеализации в физику абстракция, известная под названием абсолютно черного тела. Такое тело наде­ляется несуществующим в природе свойством поглощать абсолютно всю попадающую на него лучистую энергию, ничего не отражая и ничего не пропуская сквозь себя. Спектр излучения абсолютно черного тела является идеаль­ным случаем, ибо на него не оказывает влияния приро­да вещества излучателя или состояние его поверхности. А если можно теоретически описать спектральное распре­деление плотности энергии излучения для идеального слу­чая, то можно кое-что узнать и о процессе излучения во­обще.

Целесообразность использования идеализации опреде­ляется следующими обстоятельствами.

Во-первых, идеализация целесообразна тогда, когда под­лежащие исследованию реальные объекты достаточно сложны для имеющихся средств теоретического, в частнос­ти, математического, анализа. А по отношению к идеали­зированному случаю можно, приложив эти средства, пост­роить и развить теорию, в определенных условиях и целях эффективную, для описания свойств и поведения этих ре­альных объектов.

Во-вторых, идеализацию целесообразно использовать в тех случаях, когда необходимо исключить некоторые свой­ства, связи исследуемого объекта, без которых он существовать не может, но которые затемняют существо протекаю­щих в нем процессов. Сложный объект представляется как бы в «очищенном» виде, что облегчает его изучение.

В-третьих, применение идеализации целесообразно тогда, когда исключаемые из рассмотрения свойства, стороны, свя­зи изучаемого объекта не влияют в рамках данного иссле­дования на его сущность.

Будучи разновидностью абстрагирования, идеализация допускает элемент чувственной наглядности (обычный про­цесс абстрагирования ведет к образованию мысленных аб­стракций, не обладающих никакой наглядностью). Эта осо­бенность идеализации очень важна для реализации тако­го специфического метода теоретического познания, каковым является мысленный.

Мысленный эксперимент предполагает оперирование идеализированным объектом (замещающим в абстракции объект реальный), которое заключается в мысленном под­боре тех или иных положений, ситуаций, позволяющих обнаружить какие-то важные особенности исследуемого объекта. В этом проявляется определенное сходство мыс­ленного (идеализированного) эксперимента с реальным.

Реальный эксперимент — это метод, связанный с прак­тическим, предметно-манипулятивным, «орудийным» поз­нанием окружающего мира. В мысленном же эксперимен­те исследователь оперирует не материальными объектами, а их идеализированными образами, и само оперирование производится в его сознании, т. е. чисто умозрительно.

Возможность постановки реального эксперимента опре­деляется наличием соответствующего материально-техни­ческого (а иногда и финансового) обеспечения. Мысленный эксперимент такого обеспечения не требует.

Основное положительное значение идеализации как метода научного познания заключается в том, что получае­мые на ее основе теоретические построения позволяют за­тем эффективно исследовать реальные объекты и явления. Упрощения, достигаемые с помощью идеализации, облегча­ют создание теории, вскрывающей законы исследуемой об­ласти явлений материального мира. Если теория в це­лом правильно описывает реальные явления, то правомер­ны и положенные в ее основу идеализации.

2.2. Формализация. Язык науки

Под формализацией понимается особый подход в науч­ном познании, который заключается в использовании спе­циальной символики, позволяющей отвлечься от изучения реальных объектов, от содержания описывающих их тео­ретических положений и оперировать вместо этого некото­рым множеством символом (знаков).

Ярким примером формализации являются широко ис­пользуемые в науке математические описания различных объектов, явлений, основывающиеся на соответствующих содержательных теориях. При этом используемая матема­тическая символика не только помогает закрепить уже имеющиеся знания об исследуемых объектах, явлениях, но и выступает своего рода инструментом в процессе дальней­шего их познания.

Для построения любой формальной системы необходимо:

-               задание алфавита, т. е. определенного набора знаков;

-               задание правил, по которым из исходных знаков этого алфавита могут быть получены «слова», «формулы»;

-               задание правил, по которым от одних слов, формул дан­ной системы можно переходить к другим словам и формулам (так называемые правила вывода).

В результате создается формальная знаковая система в виде определенного искусственного языка. Важным досто­инством этой системы является возможность проведения в ее рамках исследования какого-либо объекта чисто фор­мальным путем (оперирование знаками) без непосред­ственного обращения к этому объекту.

Другое достоинство формализации состоит в обеспече­нии краткости и четкости записи научной информации, что открывает большие возможности для оперирования ею.

Возможность представить те или иные теоретические положения науки в виде формализованной знаковой сис­темы имеет большое значение для познания. Но при этом следует иметь в виду, что формализация той или иной тео­рии возможна только при учете ее содержательной сторо­ны. Только в этом случае могут быть правильно примене­ны те или иные формализмы. Голое математическое урав­нение еще не представляет физической теории, чтобы полу­чить физическую теорию, необходимо придать математиче­ским символам конкретное эмпирическое содержание.

Расширяющееся использование формализации как ме­тода теоретического познания связано не только с разви­тием математики. В химии, например, соответствующая химическая символика вместе с правилами оперирования ею явилась одним из вариантов формализованного искусст­венного языка. Все более важное место метод формализа­ции занимал в логике по мере ее развития. Труды Лейб­ница положили начало созданию метода логических исчис­лений. Последний привел к формированию в середине XIX века математической логики, которая во второй половине нашего столетия сыграла важную роль в развитии кибернетики, в появлении электронных вычислительных ма­шин, в решении задач автоматизации производства и т. д.

Формализованные языки не могут быть единственной формой языка современной науки. В научном познании необходимо использовать и неформализованные системы. Но тенденция к возрастающей формализации языков всех и особенно естественных наук является объективной и прогрессивной.
2.3.
Индукция

и

дедукция


Индукция (от лат. inductio — наведение, побуждение) есть метод познания, основывающийся на формально-логи­ческом умозаключении, которое приводит к получению общего вывода на основании частных посылок. Другими словами, это есть движение нашего мышления от частно­го, единичного к общему.

Индукция широко применяется в научном познании. Обнаруживая сходные признаки, свойства у многих объек­тов определенного класса, исследователь делает вывод о присущности этих признаков, свойств всем объектам дан­ного класса.

Индукция, используемая в научном познании (научная индукция), может реализовываться в виде следующих ме­тодов:

1.  Метод единственного сходства (во всех случаях на­блюдения какого-то явления обнаруживается лишь один общий фактор, все другие — различны; следовательно, этот единственный сходный фактор есть причина данного явле­ния).

2.  Метод единственного различия (если обстоятельства возникновения какого-то явления и обстоятельства, при которых оно не возникает, почти во всем сходны и разли­чаются лишь одним фактором, присутствующим только в первом случае, то можно сделать вывод, что этот фактор и есть причина данного явления).

3. Соединенный метод сходства и различия (представ­ляет собой комбинацию двух вышеуказанных методов).

4. Метод сопутствующих изменений (если определенные изменения одного явления всякий раз влекут за собой не­которые изменения в другом явлении, то отсюда вытека­ет вывод о причинной связи этих явлений).

5.  Метод остатков (если сложное явление вызывается многофакторной причиной, причем некоторые из этих фак­торов известны как причина какой-то части данного явле­ния, то отсюда следует вывод: причина другой части Явле­ния — остальные факторы, входящие в общую причину этого явления).

Родоначальником классического индуктивного метода познания является Ф. Бэкон. Но он трактовал индукцию чрезвычайно широко, считал ее важнейшим методом от­крытия новых истин в науке, главным средством научного познания природы.

На самом же деле вышеуказанные методы научной индукции служат главным образом для нахождения эмпирических зависимостей между экспериментально наблю­даемыми свойствами объектов и явлений. В них систематизированы простейшие формально-логические приемы, которые стихийно использовались учеными-естествоиспытателями в любом эмпирическом исследовании. По мере развития естествознания становилось все более ясным, что методы классической индукции далеко не играют той все­охватывающей роли в научном познании, которую им приписывали Ф. Бэкон и его последователи вплоть до конца XIX века.

Такое неоправданно расширенное понимание роли ин­дукции в научном познании получило наименование всеиндуктивизма. Его несостоятельность обусловлена тем, что индукция рассматривается изолированно от других методов познания и превращается в единственное, универсаль­ное средство познавательного процесса. С критикой всеиндуктивизма выступил Ф. Энгельс, указавший, что индук­цию нельзя, в частности, отрывать от другого метода позна­ния — дедукции.

Дедукция (от лат. deductio — выведение) есть получе­ние частных выводов на основе знания каких-то общих положений. Другими словами, это есть движение нашего мышления от общего к частному, единичному.

Получение новых знаний посредством дедукции суще­ствует во всех естественных науках, но особенно большое значение дедуктивный метод имеет в математике. Оперируя математическими абстракциями и строя свои рассуждения на весьма общих положениях, математики вынуждены чаще всего пользоваться дедукцией. И математика является, по­жалуй, единственной собственно дедуктивной наукой.

3. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях познания.
3.1. Анализ и синтез

Под анализом понимают разделение объекта (мыслен­но или реально) на составные части с целью их отдельного изучения. В качестве таких частей могут быть какие-то вещественные элементы объекта или же его свойства, при­знаки, отношения и т. п.

Анализ — необходимый этап в познании объекта.

Несомненно, анализ занимает важное место в изучении объектов материального мира. Но он составляет лишь первый этап процесса познания. Если бы, скажем, химики ограничивались только анализом, т. е. выделением и изуче­нием отдельных химических элементов, то они не смогли бы познать все те сложные вещества, в состав которых входят эти элементы.

Для постижения объекта как единого целого нельзя ограничиваться изучением лишь его составных частей. В процессе познания необходимо вскрывать объективно существующие связи между ними, рассматривать их в сово­купности, в единстве. Осуществить этот второй этап в про­цессе познания — перейти от изучения отдельных состав­ных частей объекта к изучению его как единого связанного целого — возможно только в том случае, если метод ана­лиза дополняется другим методом — синтезом.

В процессе синтеза производится соединение воедино составных частей (сторон, свойств, признаков и т. п.) изу­чаемого объекта, расчлененных в результате анализа. На этой основе происходит дальнейшее изучение объекта, но уже как единого целого.

Анализ и синтез с успехом используются и в сфере мыслительной деятельности человека, т. е. в теоретиче­ском познании, но и здесь, как и на эмпирическом уров­не познания, анализ и синтез — это не две оторванные друг от друга операции.
3.2.
Аналогия

и

моделирование


Под аналогией понимается подобие, сходство каких-то свойств, признаков или отношений у различных в целом объектов. Установление сходства (или различия) между объектами осуществляется в результате их сравнения. Таким образом, сравнение лежит в основе метода аналогии. Если делается логический вывод о наличии какого-либо свойства, признака, отношения у изучаемого объекта на основании установления его сходства с другими объекта­ми, то этот вывод называют умозаключением по аналогии.

Степень вероятности получения правильного умозаклю­чения по аналогии будет тем выше: 1) чем больше извест­но общих свойств у сравниваемых объектов; 2) чем суще­ственнее обнаруженные у них общие свойства и 3) чем глубже познана взаимная закономерная связь этих сход­ных свойств. При этом нужно иметь в виду, что если объект, в отношении которого делается умозаключение по аналогии с другим объектом, обладает каким-нибудь свой­ством, не совместимым с тем свойством, о существовании которого должен быть сделан вывод, то общее сходство этих объектов утрачивает всякое значение.

Существуют различные типы выводов по аналогии. Но общим для них является то, что во всех случаях непосред­ственному исследованию подвергается один объект, а вывод делается о другом объекте. Поэтому вывод по аналогии в самом общем смысле можно определить как перенос ин­формации с одного объекта на другой. При этом первый объект, который собственно и подвергается исследованию, именуется моделью, а другой объект, на который переносит­ся информация, полученная в результате исследования пер­вого объекта (модели), называется оригиналом (иногда — прототипом, образцом и т. д.).

«Под моделированием» понимается изучение моделируе­мого объекта (оригинала), базирующееся на взаимоодноз­начном соответствии определенной части свойств оригина­ла и замещающего его при исследовании объекта (модели) и включающее в себя построение модели, изучение ее и перенос полученных сведений на моделируемый объект — оригинал».

В зависимости от характера используемых в научном исследовании моделей различают несколько видов модели­рования.

1. Мысленное (идеальное) моделирование. К этому виду моделирования относятся самые различные мыслен­ные представления в форме тех или иных воображаемых моделей.

2. Физическое моделирование. Оно характеризуется физическим подобием между моделью и оригиналом и имеет целью воспроизведение в модели процессов, свой­ственных оригиналу. По результатам исследования тех или иных физических свойств модели судят о явлениях, происходящих (или могущих произойти) в так называе­мых «натуральных условиях». Пренебрежение результата­ми таких модельных исследований может иметь тяжелые последствия.

В настоящее время физическое моделирование широко используется для разработки и экспериментального изуче­ния различных сооружений (плотин электростанций, оро­сительных систем и т. п.), машин (аэродинамические ка­чества самолетов, например, исследуются на их моделях, обдуваемых воздушным потоком в аэродинамической тру­бе), для лучшего понимания каких-то природных явлений, для изучения эффективных и безопасных способов ведения горных работ и т. д.

3. Символическое (знаковое) моделирование. Оно свя­зано с условно-знаковым представлением каких-то свойств, отношений объекта-оригинала. К символическим (знако­вым) моделям относятся разнообразные топологические и графовые представления (в виде графиков, номограмм, схем и т. п.) исследуемых объектов дата, например, модели, пред­ставленные в виде химической символики и отражающие состояние или соотношение элементов во время химиче­ских реакций.

Особой и очень важной разновидностью символическо­го (знакового) моделирования является математическое моделирование. Символический язык математики позволяет выражать свойства, стороны, отношения объектов и явле­ний самой различной природы. Взаимосвязи между различ­ными величинами, описывающими функционирование та­кого объекта или явления, могут быть представлены соответствующими уравнениями (дифференциальными, интег­ральными, интегро-дифференциальными, алгебраическими) и их системами. Получившаяся система уравнений вмес­те с известными данными, необходимыми для ее решения (начальные условия, граничные условия, значения коэффи­циентов уравнений и т. п.), называется математической моделью явления.

Математическое моделирование может применяться в особом сочетании с физическим моделированием. Такое  сочетание, именуемое вещественно-математическим (или предметно-математическим) моделированием, позволяет исследовать какие-то процессы в объекте-оригинале, заменяя их изучением процессов совсем иной природы (проте­кающих в модели; которые, однако, описываются теми же математическими соотношениями, что и исходные процессы).

4. Численное моделирование на компьютере. Эта разновидность моделирования основывается на ранее создан­ной математической модели изучаемого объекта или явле­ния и применяется в случаях больших объемов вычисле­нии, необходимых для исследования данной модели. При этом для решения содержащихся в ней систем уравнений с помощью компьютера необходимо предварительное со­ставление программы, которая выполняется затем электронной вычислительной машиной в виде последовательно­сти элементарных математических и логических операций.

Численное моделирование особенно важно там, где не совсем ясна физическая картина изучаемого явления, не познан внутренний механизм взаимодействия. Путем рас­четов на компьютере различных вариантов ведется накоп­ление фактов, что дает возможность, в конечном счете, про­извести отбор наиболее реальных и вероятных ситуаций. Активное использование методов численного моделирова­ния позволяет резко сократить сроки научных и конструк­торских разработок.

Метод моделирования непрерывно развивается: на сме­ну одним типам моделей по мере прогресса науки прихо­дят другие. В то же время неизменным остается одно: важность, актуальность, а иногда и незаменимость модели­рования как метода научного познания.
Список использованной литературы
Самыгина С.И. Концепции современного естествознания. – Ростов н/Д: «Феникс», 2003. – 7-40

1. Реферат Активизация региональной политики по развитию малого предпринимательства в хабаровском крае
2. Курсовая на тему Игра в процессе обучения на уроках
3. Реферат Проблемы развития детского мышления в условиях зрительной патологии ранний и младший дошкольный
4. Реферат Происхождение и ранняя история восточных славян 2
5. Курсовая Принципы - правовые начала трудового законодательства
6. Реферат Конфликты 9
7. Сочинение на тему Горький м. - Сила и слабость человека в понимании м. горького
8. Реферат Денежные единицы разных стран
9. Реферат на тему Stand By Me Essay Research Paper Stand
10. Реферат Россия в XVI - XVII веках