Реферат

Реферат Введение в стереометрию

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 26.12.2024

















Реферат на тему:

«Введение в стереометрию»






























I
.Основные аксиомы стереометрии




В стереометрии к основным понятиям планиметрии добавляется еще одно - плоскость, а вместе с ним - аксиомы, регулирующие «взаимоотношения» плоскостей с другими объектами геометрии. Таких аксиом три.

Первая- аксиома выхода в пространство - придает «театру геометрических действий» новое, третье измерение:
·        Имеется четыре точки, не лежащие в одной плоскости (рис. 1)


Рис. 1
 
Таким образом, не все точки находятся в одной плоскости. Но этого недостаточно. Нужно, чтобы различных плоскостей было бесконечно много. Это обеспечивается второй аксиомой- аксиомой плоскости:


·        Через любые три точки проходит плоскость.





С третьей аксиомой мы сталкиваемся, когда складываем фигурки из бумаги: все знают, что, образующиеся при этом линии сгиба - прямые.

Аксиома пересечения плоскостей звучит так:



·       

Рис. 2
 
Если две плоскости имеют общую точку, то их пересечение есть прямая.

·        (рис.2)

Отсюда следует: если три точки лежат на одной прямой, то проходящая через них плоскость единственная.


          Действительно, если через какие- то три точки проходят две разные плоскости, то через эти точки можно провести прямую, а именно прямую, по которой плоскости пересекаются. Отметим, что последнее свойство само нередко включается в аксиомы.

          Третья аксиома играет очень существенную и неочевидную с первого взгляда роль в стереометрии: она делает пространство в точности трехмерным, потому что в пространствах размерности четыре и выше плоскости могут пересекаться по одной точке. К трем указанным  так же присоединяются планометрические аксиомы, переосмысленные и подправленные с учетом того, что теперь мы имеем дело не с одной, а с несколькими плоскостями. Например, аксиому прямой - через две различные точки можно провести одну и только одну прямую - переносят в стереометрию дословно, но только она уже распространяется на две точки пространства.

          В качестве следствия выведем прямо из аксиом одно полезное следствие: прямая, имеющая с плоскостью хотя бы две общие точки, целиком лежит в этой плоскости.


β

 

α
 

Рис. 3
 

B
 

A
 

.
 

.
 

.C
 

l
 
          Пусть прямая l проходит через точки А и В плоскости α
(рис. 3). Вне плоскости α есть хотя бы одна точка С (по аксиоме выхода в пространство). В соответствии с аксиомой плоскости через А,В и С можно провести плоскостьβ. Она отлична от плоскости α, так как содержит С и имеет с α две общие точки. Значит,β пересекается сα по прямой, которой, как и l, принадлежат А, В. По аксиоме прямой, линия пересечения плоскостей совпадает с l. Но эта линия лежит в плоскости α, что и требовалось доказать.


         

Путем несложных доказательств мы находим, что:

·        На каждой плоскости выполняются все утвержде-ния планиметрии.




II
. Прямые, плоскости, параллельность.


 

     Уже такое основное понятие, как параллель­ность прямых, нуждается в новом определении:

две прямые в пространстве называются парал-лельнылт, если они лежат в одной плоскости и не имеют общих точек. Так что не попадай­тесь в одну из излюбленных экзаменаторами ловушек — не пытайтесь «доказывать», что через две параллельные прямые можно про­вести плоскость: это верно по определению параллельности прямых! Знаменитую плани­метрическую аксиому о единственности парал­лельной включают и в аксиомы стереометрии, а с её помощью доказывают главное свойство параллельных прямых в пространстве:

·        Через точку, не лежащую на прямой, можно провести одну и только одну прямую параллельно данной.


 Сохраняется и другое важное свойство па­раллельных прямых, называемое транзитив­ностью параллельности:

·        Если две прямые а и b параллельны   третьей прямой с, то они параллель­ны друг другу.

     Но доказать это свойство в стереометрии сложнее. На плоскости непараллельные прямые обязаны пересекаться и потому не могут быть одновременно параллельны третьей (иначе нарушается аксиома параллельных). В про­странстве существуют непараллельные и при­том непересекающиеся прямые — если они лежат в разных плоскостях. О таких прямых говорят, что они скрещиваются.



 



 


 


 

D
 

А
 
На рис. 4 изображён куб; прямые АВ и ВС пересекаются, АВ и CD — параллельны, а АВ и В¹С¹ — скрещиваются. В дальнейшем мы часто будем прибегать к помощи куба, чтобы иллюс­трировать понятия и факты стереометрии. Наш куб склеен из шести граней-квадратов. Исходя из этого, мы будем выводить и другие его свойства. Например, можно утверждать, что прямая АВ параллельна C¹D¹, потому что обе они параллельны общей стороне CD со­держащих их квадратов.


С
 

В
 

Рис. 4
 
В стереометрии отношение параллельности рассматривается и для плоскостей: две пло­скости или прямая и плоскость параллельны, если они не имеют общих точек. Прямую и плоскость удобно считать параллельными и в том случае, когда лежит в плоскости. Для плоскостей и прямых справедливы теоремы о транзитивности:

·        Если две плоскости параллельны третьей плоскости, то они параллельны между собой.

·        Если прямая и плоскость параллельны некоторой прямой( или плоскости), то они параллельны друг другу.

Наиболее важный частный случай второй теоремы- признак параллельности прямой и плоскости:

·        Прямая параллельна плоскости, если она параллельна некоторой прямой в этой плоскости.

         А вот признак параллельности плоскостей:

·        Если две пересекающиеся прямые в одной плоскости соответственно параллельны двум пересекающимся прямым в другой плоскости, то и плоскости параллельны.

         Часто используется и такая простая теорема:

·        Прямые, по которым две параллельные плоскости пересекаются третьей, параллельны друг другу.

         Посмотрим еще раз на куб (рис. 4). Из признака параллельности прямой и плоскости следует, например, что прямая А¹В¹ параллельна плоскости АВСD (так как она параллельна прямой АВ в этой плоскости), а противоположные грани куба, в частности А¹В¹С¹D¹ и ABCD, параллельны по признаку параллельности плоскостей: прямые A¹B¹ и B¹С¹ в одной грани соответственно параллельны прямым АВ и ВС в другой. И чуть менее простой пример. Плоскость, содержащая параллельные прямые AA¹ и СС¹, пересекают параллельные плоскости АВСD и A¹B¹C¹D¹ по прямым АС и А¹С¹, значит, эти прямые параллельны: аналогично, параллельные прямые В¹С и А¹D. Следовательно, параллельные плоскости АВ¹С и А¹DC, пересекающие куб по треугольникам.



1. Курсовая на тему Структура та зміст віщої освіти
2. Реферат на тему Средства создания программных продуктов
3. Доклад на тему Гектор
4. Краткое содержание Приключения Шерлока Холмса Артур Конан Дойль
5. Курсовая Основы местного самоуправления и управленческой деятельности органов местного самоуправления мун
6. Биография на тему Захаров Марк Анатольевич
7. Реферат на тему Продукция мелатонина у больных язвенной болезнью 12-перстной кишки
8. Реферат Организационная культура предприятия 4
9. Реферат Социальные гарантии и компенсации
10. Реферат Социальные институты 7