Реферат Изучение законов вращательного движения твердого тела на крестообразном маятнике Обербека
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Изучение законов вращательного движения твердого тела на крестообразном маятнике Обербека
1. Введение
Явления природы очень сложны. Даже такое обычное явление как движение тела, на самом деле оказывается совсем не простым. Чтобы понять главное и физическом явлении, не отвлекаясь на второстепенные летали, физики прибегают к моделированию, т.е. к выбору или построению упрощенной схемы явления. Вместо реального явления (или тела) изучают более простое фиктивное (несуществующее) явление, похожее на действительное в главных чертах. Такое фиктивное явление (тело) называют моделью.
Одной из важнейших моделей, с которой имеют дело в механике, является
абсолютно твердое тело. В природе нет недеформируемых тел. Всякое тело пол действием приложенных к нему сил деформируется в большей или меньшей степени. Однако, в тех случаях, когда деформация тела мала и не влияет на его движение, рассматривают модель, называемую абсолютно твердым телом.
Можно сказать, что абсолютно твердое тело - это система материальных точек, расстояние между которыми остается неизменным во время движения.
Одним из простых видов движения твердого тела является его вращение относительно неподвижной оси. Изучению законов вращательного движения твердого тела и посвящена настоящая лабораторная работа.
Напомним, что вращениетвердого тела вокруг неподвижной оси описывается уравнением моментов
(1)
Здесь - момент инерции тела относительно оси вращения, - угловая скорость вращения. M
x
- сумма проекций моментов внешних сил на ось вращения OZ
. Это уравнение по виду напоминает уравнение второго закона Ньютона:
.
Роль массы т играет момент инерции T, роль ускорения
играет угловое ускорение , а роль силы играет момент сил M
x
.
Уравнение (1) является прямым следствием законов Ньютона, поэтому его экспериментальная проверка является в то же время проверкой основных положений механики.
Как уже отмечалось, в работе изучается динамика вращательного движения
твердого тела. В частности, экспериментально проверяется уравнение(1) - уравнение моментов для вращения твердого тела вокруг неподвижной оси.
2. Экспериментальная установка. Методика эксперимента.
Экспериментальная установка, схема которой представлена на рис.1, известна как маятник Обербека. Хотя на маятник эта установкасовсем непохожа, мы по традиции и для краткости будем называть ее маятником.
Маятник Обербека состоит из четырех спиц, укрепленных на втулке под прямым углом друг к другу. На той же втулке имеется шкив радиусом r. Вся эта система может свободно вращаться вокруг горизонтальной оси. Момент инерции системы можно менять, передвигая грузы то вдоль спиц.
Вращающий момент, создаваемый силой натяжения нитиT
, равен Мн
=Т
r
. Кроме того на маятник действуетмомент сил трения в оси – Мmp - С учетом этого уравнение (1) примет вид
(2)
Согласно второму закону Ньютона для движения груза т имеем
ma=mg-T, (3)
где ускорение a поступательного движения груза связано с угловым ускорением маятника кинематическим условием
(4)
выражающим разматывание нити со шкива без проскальзывания. Решая уравнения (2)-(4) совместно, нетрудно получить угловое ускорение
(5)
Угловое ускорение, с другой стороны, можно довольно просто определить экспериментально. Действительно, измеряя время (, в течении которого груз т
опускается на расстояние h, можно найти ускорение а: a
=2
h
/
t
2, и, следовательно,
угловое ускорение
(6)
Формула (5) дает связь между величиной углового ускорения , которую
можно измерить, и величиной момента инерции . В формулу (5) входит неизвестная величина Мmp. Хотя момент сил трения мал, тем не менее он мал не на столько, чтобы им в уравнении (5) можно было пренебречь. Уменьшить относительную роль момента сил трения при данной конфигурации установки можно было бы, увеличивая массу груза m. Однако, здесь приходится принимать во внимание два обстоятельства:
1) увеличение массы т ведет к увеличениюдавления маятника на ось, что в свою очередь вызывает возрастание сил трения;
2) с увеличениемm уменьшается время движения (и снижается точность измерения времени, а значит ухудшается точность измерения величины углового ускорения .
Моментинерции , входящий в выражение (5), согласно теореме Гюйгенса-Штейнера и свойства аддитивности момента инерции может быть записан в виде
(7)
Здесь - момент инерции маятника, при условии, что центр масс каждого грузаm
0 находится на оси вращения. R - расстояние от оси до центров грузов то
.
В уравнение (5) также входит величина тr
2
.
В условиях опыта
(убедитесь в этом!). Пренебрегая этой величиной в знаменателе (5), получаем простую формулу, которую можно проверить экспериментально
(8)
Экспериментально исследуем две зависимости:
1. Зависимость углового ускорения Е от момента внешней силы М=тgr при
условии, что момент инерции остается постоянным. Если построить график зависимости = f
(
M
) , то согласно (8) экспериментальные точки должны ложиться на прямую (рис.2), угловой коэффициент которой равен , а точка пересечения с осью ОМ дает Мmp
.
|
|
2. Зависимость момента инерции - от расстояния R грузов до оси вращения
маятника (соотношение (7)).
Выясним, как проверить эту зависимость экспериментально. Для этого преобразуем соотношение (8), пренебрегая в нем моментом сил трения М
mp сравнению с моментомM
=
mgr
. (подобное пренебрежение будет правомочно, если величина груза такова, чтоmgr
>> М
mp
). Из уравнения (8) имеем
Cледовательно,
(9)
Из полученного выражения понятно, как экспериментально проверить зависимость (7): нужно, выбрав постоянную массу груза т, измерять ускорение a при различных положениях R грузов m
0 на спицах. Результаты удобно изобразить в виде точек на координатной плоскости ХОУ, где
Если экспериментальные точки в пределах точности измерений ложиться на. прямую (рис.3), то это подтверждает зависимость (9), а значит и формулу
3. Измерения. Обработка результатов измерений.
1. Сбалансируйте маятник. Установите грузы на некотором расстоянии R
от оси маятника. При этом маятник должен находиться в состоянии безразличного равновесия. Проверьте, хорошо ли сбалансирован маятник. Для этого маятник следует несколько раз привести во вращение и дать возможность остановиться. Если маятник останавливается в различных отличающихся другот друга положениях, то он сбалансирован.
2. Оцените момент сил трения.Для этого, увеличивая массу груза т, найдите минимальное ее значениеm
1
, при котором маятник начинает вращаться. Повернув маятник на 180° по отношению к начальному положению, повторите описанную процедуру и найдите здесь минимальное значение т2
. (Может оказаться, что по причине неточной балансировки маятника). Оцените по этим данным момент сил трения
3. Экспериментально проверьте зависимость (8). (В этой серии измерений момент инерции маятника должен оставаться постоянным =const). Укрепите на нити некоторый груз m
>
m
i, (i
=1,2) и измерьте время t
, за которое груз опускается на расстояние h. Измерение времени t
для каждого груза при постоянном значении h повторить 3 раза. Затем найдите среднее значение времени падения груза по формуле
и определите среднее значение углового ускорения
Подумайте, как оценить и оцените погрешность полученного значения . Описанные в этом пункте измерения повторите для 5 значений массы груза m. удовлетворяющих неравенству m
>
m
i, (i
=1,2).
Результаты измерении занесите в таблицу
т | r | t 1 | t 2 | t 3 | | | h | | | | М | | |
1 | |||||||||||||
2 | |||||||||||||
3 | |||||||||||||
4 | |||||||||||||
5 |
По полученным данным постройте график зависимости=
f
(
M
). По графику
определите момент инерции маятника и момент сил трения М
mp
.
4. Проверьте экспериментально зависимость (7). Для этого, взяв постоянную массу грум m, определите ускорение а груза a при 5 различных положениях на спицах грузов то .В каждом положении R измерения времени падения t груза m
. с высоты h повторите 3 раза. Найдите среднее значение времени падения:
и определите среднее значение ускорения груза
Результаты измерений занесите в таблицу
R | t 1 | t 2 | t 3 | | | h | | | | |
1 | ||||||||||
2 | ||||||||||
3 | ||||||||||
4 | ||||||||||
5 |
По полученным данным рассчитайте величины и и постройте
графикy
=
f
(
x
). Для построения графика удобно сначала заполнить таблицу
1 | 2 | 3 | 4 | 5 | |
x | |||||
| |||||
y | |||||
|
5. Объясните полученные результаты. Сделайте выводы, находятся ли результаты экспериментов в соответствии с теорией.
Контрольные вопросы
1. Что мы называем абсолютно твердым телом? Какое уравнение описывает вращение твердого тела относительно неподвижной оси?
2. Получите выражение для момента импульса икинетической энергиитвердого тела, вращающегося вокруг неподвижной оси.
3. Что называют моментом инерции твердого тела относительно некоторой оси? Сформулируйте и докажите теорему Гюйгенса-Штейнера.
4. Какие измерения в проведенных Вами экспериментах вносилинаибольшую погрешность? Что необходимо сделать для уменьшения этойпогрешности?